dc.contributor.author | Aperador, w | |
dc.contributor.author | Bautista-Ruiz, J | |
dc.contributor.author | Caicedo, J. | |
dc.date.accessioned | 2022-12-04T21:34:20Z | |
dc.date.available | 2022-12-04T21:34:20Z | |
dc.date.issued | 2022-01-01 | |
dc.identifier.issn | 0974-1496 | spa |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6631 | |
dc.description.abstract | To ascertain the influence of titanium percentage in 316L austenitic steel, titanium percentages varied from 0.5 to 2% aggregated to 316L steel. The powder metallurgy method was used. The powdered material was pressed at 800 MPa and then sintered at 1300°C. The X-ray diffraction (XRD) technique was used to characterize the identification of the phases after the processed mixtures. Wear and tribowear properties were determined by pin on disc tests. Electrochemical polarization curves were used to study corrosion. According to the results of the samples, the corrosion resistance of titanium increased to a percentage of 1.5% due to the formation of the phases generated by the mixture. However, it was determined that the most appropriate percentage is 2%, due to the synergistic mode specifically for wear and corrosion resistance, the mechanism is the most adequate. | eng |
dc.format.extent | 7 paginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights | CC BY 4.0 license | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | http://rasayanjournal.co.in/admin/php/upload/3402_pdf.pdf | spa |
dc.title | SYNERGISTIC CORROSION-WEAR EFFECT IN AUSTENITIC POWDER METALLURGICAL STEEL WITH DIFFERENT TITANIUM ADDITIONS | eng |
dc.type | Artículo de revista | spa |
dcterms.references | 1. H. Kulkarni and V.V. Dabhade, Journal of Manufacturing Processes, 44, 1(2019), https://doi.org/10.1016/j.jmapro.2019.05.009 | spa |
dcterms.references | 2. A. Billard, F. Maury, P. Aubry, F. Balbaud-Célérier, B. Bernard, F. Lomello, H. Maskrot, E. Meillot, A. Michau and F. Schuster, Comptes Rendus Physique, 19(8), 755(2018), https://doi.org/10.1016/j.crhy.2018.10.005 | spa |
dcterms.references | 3. J. Caicedo, N. Bonilla, W. Aperador, Metals, 11(12), 11122049 (2021), https://doi.org/10.3390/met11122049 | spa |
dcterms.references | 4. A. Kumar-Rai, S. Raju, B. Jeya Ganesh, G. Panneerselvam, M. Vijayalakshmi, T. Jayakumar and B. Raj, Nuclear Engineering and Design, 241(8), 2787(2011), https://doi.org/10.1016/j.nucengdes.2011.05.039 | spa |
dcterms.references | 5. U. Pandey, R. Purohit, P. Agarwal and S. Kumar Singh, Materials Today: Proceedings, 5(2), 4106(2018), https://doi.org/10.1016/j.matpr.2017.11.671 | spa |
dcterms.references | 6. N. Zhang, X. Han, D. Sun, S. Liu, H. Liu, W. Yang and G. Wu, Powder Technology, 369, 334(2020), https://doi.org/10.1016/j.powtec.2020.05.030 | spa |
dcterms.references | 7. N. Karthikeyan, B. Radha Krishnan, A. VembathuRajesh and V. Vijayan, Materials Today: Proceedings, 37(2), 2770(2021), https://doi.org/10.1016/j.matpr.2020.08.643 | spa |
dcterms.references | 8. N. Akçaml and B. Şenyurt, Ceramics International, 47(5), 6813(2021), https://doi.org/10.1016/j.ceramint.2020.11.024 | spa |
dcterms.references | 10. Q. Zhao, Y. Chen, Y. Xu, R. Torrens, L. Bolzoni and F. Yang, Materials & Design, 200, 109457(2021), https://doi.org/10.1016/j.apt.2021.05.009 | spa |
dcterms.references | 12. Y. Zhang, S. Fang, Y. Wang and D. Zhang, Materials Science and Engineering: A, 803, 140701(2021), https://doi.org/10.1016/j.msea.2020.140701 | spa |
dcterms.references | 13. Y. Liu, Z. Liu and M. Wang, Journal of Materials Processing Technology, 294, 117142(2021), https://doi.org/10.1016/j.jmatprotec.2021.117142 | spa |
dcterms.references | 14. J. Bautista-Ruiz, J.C. Caicedo and A. Chaparro, Rasayan Journal of Chemistry, 12(4), 1950(2019), https://doi.org/10.31788/RJC.2019.1245390 | spa |
dcterms.references | 15. B. Shahabi Kargar, M.H. Moayed, A. Babakhani, A. Davoodi, Corrosion Science, 53(1), 135(2011), https://doi.org/10.1016/j.corsci.2010.09.004 | spa |
dcterms.references | 16. P. Murkute, S. Pasebani and O. Burkan-Isgor, Journal of Materials Processing Technology, 273, 116243(2019), https://doi.org/10.1016/j.jmatprotec.2019.05.024 | spa |
dcterms.references | 17. J.E. Sanchéz, L. Ipaz, W. Aperador, J.C. Caicedo, C. Amaya, M.A.H Landaverde, F.E Beltran, J. Muñoz-Saldaña and G. Zambrano, Applied Surface Science, 256(8), 2380(2010), https://doi.org/10.1016/j.apsusc.2009.10.071 | spa |
dcterms.references | 19. J. Bautista-Ruiz, G. Moreno and A. Chaparro, Rasayan Journal of Chemistry, 13(3), 1711(2020), https://doi:10.31788/RJC.2020.1335521 | spa |
dcterms.references | 20. L. Romero-Resendiz, P. Gómez-Sáez, A. Vicente-Escuder and V. Amigó-Borrás, Journal of Materials Research and Technology, 11, 1719(2021), https://doi.org/10.1016/j.jmrt.2021.02.014 | spa |
dcterms.references | 21. X. Song, F. Liu, C. Qiu, E. Coy, H. Liu, W. Aperador, K. Załęski, J. Li, W. Song, Z. Lu, H. Pan, L. Kong and G. Wang, Materials Horizons, 2021(8), 912(2021), https://doi.org/10.1039/D0MH01837F | spa |
dcterms.references | 22. M. Fellah, N. Hezil, M. Zine Touhami, M. AbdulSamad, A. Obrosov, D. O. Bokov, E. Marchenko, A. Montagne and A. Alhussein, Journal of Materials Research and Technology, 9(6), 14061(2020), https://doi.org/10.1016/j.jmrt.2020.09.118 | spa |
dcterms.references | 23. J. Chávez, O. Jimenez, L. Olmos, I. Farias, M. Flores-Jimenez, R. Suárez-Martínez, J.L. Cabezas-Villa and J. Lemus-Ruiz, Materials Letters, 280, 128590(2020), https://doi.org/10.1016/j.matlet.2020.128590 | spa |
dcterms.references | 24. M. Belwanshi, P. Jayaswal and A. Aherwar, Materials Today: Proceedings, 44(6), 4131(2021), https://doi.org/10.1016/j.matpr.2020.10.458 | spa |
dcterms.references | 25. J. Bautista-Ruiz, W. Aperador and M.R. Joya, Rasayan Journal of Chemistry, 13(4), 2092(2020), https://doi:10.31788/RJC.2020.1345854 | spa |
dcterms.references | 25. J. Bautista-Ruiz, W. Aperador and M.R. Joya, Rasayan Journal of Chemistry, 13(4), 2092(2020), https://doi:10.31788/RJC.2020.1345854 | spa |
dcterms.references | 11. S. Dong, G. Ma, P. Lei, T. Cheng, D. Savvakin and O. Ivasishin, Advanced Powder Technology, 58, 921(2021), https://doi.org/10.1016/j.apt.2021.05.009 | spa |
dcterms.references | 18. T. Meesak and C. Thedsuwan, Materials Today: Proceedings, 5(3), 9560(2018), https://doi.org/10.1016/j.matpr.2017.10.138 | spa |
dc.contributor.corporatename | Rasayan Journal of Chemistry | spa |
dc.identifier.doi | 10.31788/RJC.2022.1516622 | |
dc.identifier.eissn | 0976-0083 | spa |
dc.relation.citationedition | Vol 15 No 1 | spa |
dc.relation.citationendpage | 64 | spa |
dc.relation.citationissue | 1 | spa |
dc.relation.citationstartpage | 57 | spa |
dc.relation.citationvolume | 15 | spa |
dc.relation.ispartofjournal | Rasayan Journal of Chemistry | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | 316L Steel | eng |
dc.subject.proposal | Titanium | eng |
dc.subject.proposal | Corrosion | eng |
dc.subject.proposal | Powder Metallurgy | eng |
dc.subject.proposal | Tribology | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |