Show simple item record

dc.contributor.authorUrbina-Suarez, Nestor Andres
dc.contributor.authorBarajas-Solano, Andres Fernando
dc.contributor.authorGarcia-Martinez, Janet Bibiana
dc.contributor.authorLopez-Barrera, German Luciano
dc.contributor.authorGonzález-Delgado, Angel Dario
dc.date.accessioned2022-12-04T20:39:32Z
dc.date.available2022-12-04T20:39:32Z
dc.date.issued2021-05-24
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6629
dc.description.abstract: In recent years, the technical and economic feasibility of using microalgae and cyanobacteria has been explored for the removal and exploitation of domestic, agricultural and industrial residual effluents with high C, N and P compounds content. To contribute to the understanding of the process and its technical viability for microalgae growth, the article discusses monitoring, flow determination, and physicochemical characteristics of two types of effluents generated in an experimental farm located in the east of Colombia, before (R1) and after biological treatment (R2). In general, the results showed the reduction of different parameters, such as total dissolved solids (TDS), hardness, salinity and phosphates after treatment with activated sludge. However, the conductivity value obtained in R1 and R2 showed the presence of a pollutant load. These findings can be attributed to the highest concentration of fats and oils in the water during early hours of the day. Finally, although the concentration of nitrates increased from 46.63 to 225.21 mg∙dm–3 and phosphate decreased slightly from 9.65 to 6.21 mg∙dm–3, no inhibition was generated in the microalgae, as evidenced in the growth of the microalgal biomass in effluents after nitrate and phosphate removal above 80%.eng
dc.format.extent7 paginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights© 2021. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Scienceseng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://journals.pan.pl/dlibra/publication/140387/edition/122643/contentspa
dc.titleProspects for using wastewater from a farm for algae cultivation: The case of Eastern Colombiaeng
dc.typeArtículo de revistaspa
dcterms.referencesABDEL-RAOUF N., AL-HOMAIDAN A.A., IBRAHEEM I.B.M. 2012. Microalgae and wastewater treatment. Saudi Journal of Biological Sciences. Vol. 19. Iss. 3 p. 257–275. DOI 10.1016/j.sjbs.2012.04.005.spa
dcterms.referencesBAIRD R., BRIDGEWATER L. 2017. Standard methods for the examination of water and waste water. 23rd ed. Washington. APHA. ISBN 9780875532875 pp. 1796.spa
dcterms.referencesBAIRD R., BRIDGEWATER L. 2017. Standard methods for the examination of water and waste water. 23rd ed. Washington. APHA. ISBN 9780875532875 pp. 1796.spa
dcterms.referencesBEKKOUCH M., ZANAGUI A. 2018. Quality of Hamadian groundwater table of the continental tertiary of Wadi Mehiya in Tindouf province (South-West of Algeria). Journal of Water and Land Development. No. 39 p. 3–9. DOI 10.2478/jwld-2018-0053.spa
dcterms.referencesBENEMANN J., WOERTZ I., LUNDQUIST T. 2012. Life cycle assessment for microalgae oil production. Disruptive Science and Technology. Vol. 1. Iss. 2 p. 68–78. DOI 10.1089/dst.2012.0013.spa
dcterms.referencesBOROWITZKA M.A. 2015. Algal biotechnology. In: The algae world. Eds. D. Sahoo, J. Seckbach. Dordrecht, Netherlands. Springer p. 319–338.spa
dcterms.referencesBURZYŃSKA I. 2019. Monitoring of selected fertilizer nutrients in surface waters and soils of agricultural land in the river valley in Central Poland. Journal of Water and Land Development. No. 43 p. 41–48. DOI 10.2478/jwld-2019-0061.spa
dcterms.referencesCAI T., PARK S.Y., LI Y. 2013. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews. Vol. 19 p. 360–369. DOI 10.1016/j. rser.2012.11.030.spa
dcterms.referencesCAMARGO J., ALONSO A. 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environmental International. Vol. 32. Iss. 6 p. 831– 849. DOI 10.1016/j.envint.2006.05.002.spa
dcterms.referencesCARVALHO J.C., BORGHETTI I.A., CARTAS L.C., WOICIECHOWSKI A.L., SOCCOL V. T., SOCCOL C.R. 2018. Biorefinery integration of microalgae production into cassava processing industry: Potential and perspectives. Bioresource Technology. Vol. 247 p. 1165– 1172. DOI 10.1016/j.biortech.2017.09.213.spa
dcterms.referencesCHEN B., CAI D., LUO Z., CHEN C., ZHANG C., QIN P., CAO H., TAN T. 2018. Corncob residual reinforced polyethylene composites considering the biorefinery process and the enhancement of performance. Journal of Cleaner Production. Vol. 198 p. 452– 462. DOI 10.1016/j.jclepro.2018.07.080.spa
dcterms.referencesCHISTI Y. 2007. Biodiesel from microalgae. Biotechnology Advances. Vol. 25. Iss. 3 p. 294–306.spa
dcterms.referencesCLARENS A.F., RESURRECCION E.P., WHITE M.A., COLOSI L.M. 2010. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental Science & Technology. Vol. 44. Iss. 5 p. 1813–1819spa
dcterms.referencesCRAMER M., SCHELHORN P., KOTZBAUER U., TRÄNCKNER J. 2019. Degradation kinetics and COD fractioning of agricultural wastewaters from biogas plants applying biofilm respirometry. Environmental Technology. Vol. 42. Iss. 15 p. 2391–2401. DOI 10.1080/09593330.2019.1701570.spa
dcterms.referencesCUÉLLAR-GARCÍA D.J., RANGEL-BASTO Y.A., URBINA-SUAREZ N.A., BARAJASSOLANO A.F., MUÑOZ-PEÑALOZA Y.A. 2019. Lipids production from Scenedesmus obliquus through carbon/nitrogen ratio optimization. Journal of Physics: Conference Series. Vol. 1388. Iss. 1, 012043. DOI 10.1088/1742-6596/1388/1/012043.spa
dcterms.referencesDOMAŃSKA M., BORAL A., HAMAL K., KUŚNIERZ M., ŁOMOTOWSKI J., PŁAZAOŻÓG P. 2019. Efficiency of municipal wastewater treatment with membrane bioreactor. Journal of Water and Land Development. No. 41 p. 47–54. DOI 10.2478/jwld-2019-0026.spa
dcterms.referencesEBRAHIMIAN A., KARIMINIA H.R., VOSOUGHI M. 2014. Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater. Renewable Energy. Vol. 71 p. 502–508. DOI 10.1016/j.renene.2014.05.031.spa
dcterms.referencesFAZAL T., MUSHTAQ A., REHMAN F., KHAN A.U., RASHID N., FAROOQ W., XU J. 2018. Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renewable and Sustainable Energy Reviews. Vol. 82 p. 3107–3126. DOI 10.1016/j.rser .2017.10.029.spa
dcterms.referencesFERNÁNDEZ D., CHICA C., PARRA M. 2013. Obtención de ácidos grasos a partir de biomasa microalgal cultivada bajo diferentes condiciones de iluminación [Obtaining fatty acids from microalgal biomass grown under different lighting conditions]. Revista Elementos. Num. 3 p. 111–119. DOI 10.15765/e.v3i3.418.spa
dcterms.referencesFLÓREZ L., CAÑIZARES R.O., MELCHY O., MARTÍNEZ F., FLORES C.M. 2017. Two stage heterotrophy/photoinduction culture of Scenedesmus incrassatulus: Potential for lutein production. Journal of Biotechnology. Vol. 262 p. 67–74. DOI 10.1016/j.jbiotec.2017.09.002.spa
dcterms.referencesGONZALEZ-DELGADO A., KAFAROV V. 2011. Microalgae based biorefinery: Issues to consider. CT&F-Ciencia, Tecnología y Futuro. Vol. 4. Iss. 4 p. 5–22. DOI 10.29047/01225383.225.spa
dcterms.referencesJAIMES D., SOLER W., VELASCO J., MUÑOZ Y., URBINA N. 2012. Characterization Chlorophytas microalgae with potential in the production of lipids for biofuels. CT&F-Ciencia, Tecnología y Futuro. Vol. 5 Iss. 1 p. 93–102. DOI 10.29047/01225383.210.spa
dcterms.referencesJAIMES D., SOLER W., VELASCO J., MUÑOZ Y., URBINA N. 2012. Characterization Chlorophytas microalgae with potential in the production of lipids for biofuels. CT&F-Ciencia, Tecnología y Futuro. Vol. 5 Iss. 1 p. 93–102. DOI 10.29047/01225383.210.spa
dcterms.referencesKONG W., SONG H., CAO Y., YONG H., HUA S., XIO C. 2011. The characteristics of biomass production, lipid accumul and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. African Journal of Biotechnology. Vol. 10(55) p. 11620–11630. DOI 10.5897/AJB11.617.spa
dcterms.referencesLAM M.K., LEE K.T. 2012. Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Applied Energy. Vol. 94 p. 303–308. DOI 10.1016/j.apenergy.2012.01.075.spa
dcterms.referencesLEAL MEDINA G.I., ABRIL BONETT J.E., MARTÍNEZ GÉLVEZ S.J., MUÑOZ PEÑALOZA Y.A., PEÑARANDA LIZARAZO E.M., URBINA SUÁREZ N.A. 2017. Producción de ácidos grasos poliinsaturados a partir de biomasa microalgal en un cultivo heterotrófico [Production of polyunsaturated fatty acids from microalgal biomass in a heterotrophic culture]. Revista Ion. Vol. 30(1) p. 91–103. DOI 10.18273/revion.v30n1-2017007.spa
dcterms.referencesLEE C.G. 1999. Calculation of light penetration depth in photobioreactors. Biotechnology and Bioprocess Engineering. Vol. 4 p. 78–81. DOI 10.1007/BF02931920.spa
dcterms.referencesLI Y., HAN F., XU H., MU J., CHEN D., FENG B., ZENG H. 2014. Potential lipid accumulation and growth characteristic of the green alga Chlorella with combination cultivation mode of nitrogen (N) and phosphorus (P). Bioresource Technology. Vol. 174 p. 24–32. DOI 10.1016/j.biortech.2014.09.142.spa
dcterms.referencesMARSELINA M., BURHANUDIN M. 2018. Phosphorus load concentration in tropical climates reservoir for each water quantity class. Journal of Water and Land Development. No. 36 p. 99–104. DOI 10.2478/jwld-2018-0010.spa
dcterms.referencesMERZOUGUI F., MAKHLOUFI A., MERZOUGUI T. 2019. Hydro-chemical and microbiological characterization of Lower Cretaceous waters in a semi-arid zone Beni-Ounif syncline, South-West of Algeria. Journal of Water and Land Development. Vol. 40 p. 67–80. DOI 10.2478/jwld-2019-0007.spa
dcterms.referencesMOHEIMANI N.R., BOROWITZKA M.A., ISDEPSKY A., SING S.F. 2013. Standard methods for measuring growth of algae and their composition. In: Algae for biofuels and energy. Eds. M.A. Borowitzka, N.R. Moheimani. Dordrecht. Springer p. 265–284.spa
dcterms.referencesOBETA M., OKAFOR U., NWANKWO C. 2019. Influence of discharged industrial effluents on the parameters of surface water in Onitsha urban area, southeastern Nigeria. Journal of Water and Land Development. No. 42 p. 136–142. DOI 10.2478/jwld-2019-0054.spa
dcterms.referencesOilgae 2017. Comprehensive report on attractive algae product opportunities [online]. Tamilnadu, India pp. 259. [Access 05.07.2020]. Available at: http://www.oilgae.com/ref/benefitsalgae-fuel-venture.htmlspa
dcterms.referencesONCEL S.S. 2013. Microalgae for a macroenergy world. Renewable Sustainable Energy Reviews. Vol. 26 p. 241–264.spa
dcterms.referencesORTÍZ M.D., GELVEZ J.H.S., PÉREZ M.E., GONZÁLEZ Á.D., BARAJAS A.F., URBINA N.A. 2017. Removal of organic pollutants from San Pablo Farm Wastewater using a pilot-scale biological treatment. Contemporary Engineering Sciences. Vol. 10. Iss. 34 p. 1685–1691.spa
dcterms.referencesOUALI N., BELABED B., ZEGHDOUDI F., RACHEDI M. 2018. Assessment of metallic contamination in sediment and mullet fish (Mugil cephalus Linnaeus, 1758) tissues from the East Algerian coast. Journal of Water and Land Development. No. 38 p. 115–126. DOI 10.2478/jwld-2018-0048.spa
dcterms.referencesRAWAT I., KUMAR R.R., MUTANDA T., BUX F. 2011. Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy. Vol. 88. Iss. 10 p. 3411–3424.spa
dcterms.referencesRICHMOND A. 2004. Biological principles of mass cultivation. In: Handbook of microalgal culture: Biotechnology and Applied Phycology. Ed. A. Richmond. Oxford, UK. Blackwell p. 125–177.spa
dcterms.referencesROMERO ROJAS J.A. 1998. Tratamiento de aguas residuales. Teoria y principios de diseño [Wastewater treatment. Theory and principles of design]. Bogotá. Escuela Colombiana de Ingeniería. ISBN 958-8060-13-3 pp. 66.spa
dcterms.referencesROSA M., PERALTA J., BOSCO D. 2010. Estimación de parámetros cinéticos de la degradación aeróbica de efluentes lácteos usando Aquasim V 2.1b [Estimation of Kinetic Parameters of the Aerobic Degradation of Dairy Wastewater using AQUASIM v 2.1b]. Información Tecnológica. Vol. 21(3) p. 51–56. DOI 10.1612/inf. tecnol.4373it.09.spa
dcterms.referencesROSENBERG J.N., OYLER G.A., WILKINSON L., BETENBAUGH M.J. 2008. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Current Opinion in Biotechnology. Vol. 19 p. 430–436. DOI 10.1016/j.copbio.2008.07.008.spa
dcterms.referencesSZE P. 1998. A biology of the algae. 3th ed. Columbus, OH. WCB/ McGraw-Hill. ISBN 0697219100 pp. 278.spa
dcterms.referencesTAUSSKY H., SHORR E. 1953. A microcolorimetric method for determination of inorganic phosphorus. Journal of Biological Chemistry. Vol. 202 p. 675–685.spa
dcterms.referencesTORRES D., SEPÚLVEDA S., ROA A. L., GELVEZ J., SUÁREZ N. 2017. Use of microalgae of Chlorophyta division in the biological treatment of acid drains of coal mines. Revista Colombiana de Biotecnología. Vol. 19(2) p. 95–104. DOI 10.15446/rev.colomb.biotec. v19N2.10429.spa
dcterms.referencesURBINA-SUÁREZ N., LILIANA-PABÓN S., SUÁREZ-GÁLVEZ J. 2006. Tratamiento biologico de aguas residuales de matadero. Caso: Frigorifico La Frontera Ltda., Villa del Rosario, Norte de Santander [Biological treatment of slaughterhouse wastewater. Case: fridge La Frontera Ltda., Villa del Rosario, Norte de Santander]. Respuestas. Vol. 11. Iss. 2 p. 39–50. DOI 10.22463/ 0122820X.607.spa
dcterms.referencesYANG C., HUA Q., SHIMIZU K. 2000. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochemical Engineering Journal. Vol. 6. Iss. 2 p. 87–102. DOI 10.1016/S1369-703X(00)00080-2.spa
dc.contributor.corporatenameJOURNAL OF WATER AND LAND DEVELOPMENTspa
dc.identifier.doi10.24425/jwld.2022.140387
dc.identifier.eissn2083-4535 Vspa
dc.relation.citationendpage179spa
dc.relation.citationissue52spa
dc.relation.citationstartpage172spa
dc.relation.citationvolume2022spa
dc.relation.ispartofjournalJournal of Water and Land Developmentspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalbiological treatmenteng
dc.subject.proposalcharacterisationeng
dc.subject.proposalmicroalgaeeng
dc.subject.proposalmonitoringeng
dc.subject.proposalnutrient wastewatereng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2021. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences
Except where otherwise noted, this item's license is described as © 2021. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences