dc.contributor.author | Urbina-Suarez, Nestor Andres | |
dc.contributor.author | Barajas-Solano, Andres Fernando | |
dc.contributor.author | Garcia-Martinez, Janet Bibiana | |
dc.contributor.author | Lopez-Barrera, German Luciano | |
dc.contributor.author | González-Delgado, Angel Dario | |
dc.date.accessioned | 2022-12-04T20:39:32Z | |
dc.date.available | 2022-12-04T20:39:32Z | |
dc.date.issued | 2021-05-24 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6629 | |
dc.description.abstract | : In recent years, the technical and economic feasibility of using microalgae and cyanobacteria has been explored
for the removal and exploitation of domestic, agricultural and industrial residual effluents with high C, N and
P compounds content. To contribute to the understanding of the process and its technical viability for microalgae growth,
the article discusses monitoring, flow determination, and physicochemical characteristics of two types of effluents
generated in an experimental farm located in the east of Colombia, before (R1) and after biological treatment (R2). In
general, the results showed the reduction of different parameters, such as total dissolved solids (TDS), hardness, salinity
and phosphates after treatment with activated sludge. However, the conductivity value obtained in R1 and R2 showed the
presence of a pollutant load. These findings can be attributed to the highest concentration of fats and oils in the water
during early hours of the day. Finally, although the concentration of nitrates increased from 46.63 to 225.21 mg∙dm–3 and
phosphate decreased slightly from 9.65 to 6.21 mg∙dm–3, no inhibition was generated in the microalgae, as evidenced in
the growth of the microalgal biomass in effluents after nitrate and phosphate removal above 80%. | eng |
dc.format.extent | 7 paginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights | © 2021. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences | eng |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.source | https://journals.pan.pl/dlibra/publication/140387/edition/122643/content | spa |
dc.title | Prospects for using wastewater from a farm for algae cultivation: The case of Eastern Colombia | eng |
dc.type | Artículo de revista | spa |
dcterms.references | ABDEL-RAOUF N., AL-HOMAIDAN A.A., IBRAHEEM I.B.M. 2012. Microalgae and wastewater treatment. Saudi Journal of Biological Sciences. Vol. 19. Iss. 3 p. 257–275. DOI 10.1016/j.sjbs.2012.04.005. | spa |
dcterms.references | BAIRD R., BRIDGEWATER L. 2017. Standard methods for the examination of water and waste water. 23rd ed. Washington. APHA. ISBN 9780875532875 pp. 1796. | spa |
dcterms.references | BAIRD R., BRIDGEWATER L. 2017. Standard methods for the examination of water and waste water. 23rd ed. Washington. APHA. ISBN 9780875532875 pp. 1796. | spa |
dcterms.references | BEKKOUCH M., ZANAGUI A. 2018. Quality of Hamadian groundwater table of the continental tertiary of Wadi Mehiya in Tindouf province (South-West of Algeria). Journal of Water and Land Development. No. 39 p. 3–9. DOI 10.2478/jwld-2018-0053. | spa |
dcterms.references | BENEMANN J., WOERTZ I., LUNDQUIST T. 2012. Life cycle assessment for microalgae oil production. Disruptive Science and Technology. Vol. 1. Iss. 2 p. 68–78. DOI 10.1089/dst.2012.0013. | spa |
dcterms.references | BOROWITZKA M.A. 2015. Algal biotechnology. In: The algae world. Eds. D. Sahoo, J. Seckbach. Dordrecht, Netherlands. Springer p. 319–338. | spa |
dcterms.references | BURZYŃSKA I. 2019. Monitoring of selected fertilizer nutrients in surface waters and soils of agricultural land in the river valley in Central Poland. Journal of Water and Land Development. No. 43 p. 41–48. DOI 10.2478/jwld-2019-0061. | spa |
dcterms.references | CAI T., PARK S.Y., LI Y. 2013. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews. Vol. 19 p. 360–369. DOI 10.1016/j. rser.2012.11.030. | spa |
dcterms.references | CAMARGO J., ALONSO A. 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environmental International. Vol. 32. Iss. 6 p. 831– 849. DOI 10.1016/j.envint.2006.05.002. | spa |
dcterms.references | CARVALHO J.C., BORGHETTI I.A., CARTAS L.C., WOICIECHOWSKI A.L., SOCCOL V. T., SOCCOL C.R. 2018. Biorefinery integration of microalgae production into cassava processing industry: Potential and perspectives. Bioresource Technology. Vol. 247 p. 1165– 1172. DOI 10.1016/j.biortech.2017.09.213. | spa |
dcterms.references | CHEN B., CAI D., LUO Z., CHEN C., ZHANG C., QIN P., CAO H., TAN T. 2018. Corncob residual reinforced polyethylene composites considering the biorefinery process and the enhancement of performance. Journal of Cleaner Production. Vol. 198 p. 452– 462. DOI 10.1016/j.jclepro.2018.07.080. | spa |
dcterms.references | CHISTI Y. 2007. Biodiesel from microalgae. Biotechnology Advances. Vol. 25. Iss. 3 p. 294–306. | spa |
dcterms.references | CLARENS A.F., RESURRECCION E.P., WHITE M.A., COLOSI L.M. 2010. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental Science & Technology. Vol. 44. Iss. 5 p. 1813–1819 | spa |
dcterms.references | CRAMER M., SCHELHORN P., KOTZBAUER U., TRÄNCKNER J. 2019. Degradation kinetics and COD fractioning of agricultural wastewaters from biogas plants applying biofilm respirometry. Environmental Technology. Vol. 42. Iss. 15 p. 2391–2401. DOI 10.1080/09593330.2019.1701570. | spa |
dcterms.references | CUÉLLAR-GARCÍA D.J., RANGEL-BASTO Y.A., URBINA-SUAREZ N.A., BARAJASSOLANO A.F., MUÑOZ-PEÑALOZA Y.A. 2019. Lipids production from Scenedesmus obliquus through carbon/nitrogen ratio optimization. Journal of Physics: Conference Series. Vol. 1388. Iss. 1, 012043. DOI 10.1088/1742-6596/1388/1/012043. | spa |
dcterms.references | DOMAŃSKA M., BORAL A., HAMAL K., KUŚNIERZ M., ŁOMOTOWSKI J., PŁAZAOŻÓG P. 2019. Efficiency of municipal wastewater treatment with membrane bioreactor. Journal of Water and Land Development. No. 41 p. 47–54. DOI 10.2478/jwld-2019-0026. | spa |
dcterms.references | EBRAHIMIAN A., KARIMINIA H.R., VOSOUGHI M. 2014. Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater. Renewable Energy. Vol. 71 p. 502–508. DOI 10.1016/j.renene.2014.05.031. | spa |
dcterms.references | FAZAL T., MUSHTAQ A., REHMAN F., KHAN A.U., RASHID N., FAROOQ W., XU J. 2018. Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renewable and Sustainable Energy Reviews. Vol. 82 p. 3107–3126. DOI 10.1016/j.rser .2017.10.029. | spa |
dcterms.references | FERNÁNDEZ D., CHICA C., PARRA M. 2013. Obtención de ácidos grasos a partir de biomasa microalgal cultivada bajo diferentes condiciones de iluminación [Obtaining fatty acids from microalgal biomass grown under different lighting conditions]. Revista Elementos. Num. 3 p. 111–119. DOI 10.15765/e.v3i3.418. | spa |
dcterms.references | FLÓREZ L., CAÑIZARES R.O., MELCHY O., MARTÍNEZ F., FLORES C.M. 2017. Two stage heterotrophy/photoinduction culture of Scenedesmus incrassatulus: Potential for lutein production. Journal of Biotechnology. Vol. 262 p. 67–74. DOI 10.1016/j.jbiotec.2017.09.002. | spa |
dcterms.references | GONZALEZ-DELGADO A., KAFAROV V. 2011. Microalgae based biorefinery: Issues to consider. CT&F-Ciencia, Tecnología y Futuro. Vol. 4. Iss. 4 p. 5–22. DOI 10.29047/01225383.225. | spa |
dcterms.references | JAIMES D., SOLER W., VELASCO J., MUÑOZ Y., URBINA N. 2012. Characterization Chlorophytas microalgae with potential in the production of lipids for biofuels. CT&F-Ciencia, Tecnología y Futuro. Vol. 5 Iss. 1 p. 93–102. DOI 10.29047/01225383.210. | spa |
dcterms.references | JAIMES D., SOLER W., VELASCO J., MUÑOZ Y., URBINA N. 2012. Characterization Chlorophytas microalgae with potential in the production of lipids for biofuels. CT&F-Ciencia, Tecnología y Futuro. Vol. 5 Iss. 1 p. 93–102. DOI 10.29047/01225383.210. | spa |
dcterms.references | KONG W., SONG H., CAO Y., YONG H., HUA S., XIO C. 2011. The characteristics of biomass production, lipid accumul and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. African Journal of Biotechnology. Vol. 10(55) p. 11620–11630. DOI 10.5897/AJB11.617. | spa |
dcterms.references | LAM M.K., LEE K.T. 2012. Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Applied Energy. Vol. 94 p. 303–308. DOI 10.1016/j.apenergy.2012.01.075. | spa |
dcterms.references | LEAL MEDINA G.I., ABRIL BONETT J.E., MARTÍNEZ GÉLVEZ S.J., MUÑOZ PEÑALOZA Y.A., PEÑARANDA LIZARAZO E.M., URBINA SUÁREZ N.A. 2017. Producción de ácidos grasos poliinsaturados a partir de biomasa microalgal en un cultivo heterotrófico [Production of polyunsaturated fatty acids from microalgal biomass in a heterotrophic culture]. Revista Ion. Vol. 30(1) p. 91–103. DOI 10.18273/revion.v30n1-2017007. | spa |
dcterms.references | LEE C.G. 1999. Calculation of light penetration depth in photobioreactors. Biotechnology and Bioprocess Engineering. Vol. 4 p. 78–81. DOI 10.1007/BF02931920. | spa |
dcterms.references | LI Y., HAN F., XU H., MU J., CHEN D., FENG B., ZENG H. 2014. Potential lipid accumulation and growth characteristic of the green alga Chlorella with combination cultivation mode of nitrogen (N) and phosphorus (P). Bioresource Technology. Vol. 174 p. 24–32. DOI 10.1016/j.biortech.2014.09.142. | spa |
dcterms.references | MARSELINA M., BURHANUDIN M. 2018. Phosphorus load concentration in tropical climates reservoir for each water quantity class. Journal of Water and Land Development. No. 36 p. 99–104. DOI 10.2478/jwld-2018-0010. | spa |
dcterms.references | MERZOUGUI F., MAKHLOUFI A., MERZOUGUI T. 2019. Hydro-chemical and microbiological characterization of Lower Cretaceous waters in a semi-arid zone Beni-Ounif syncline, South-West of Algeria. Journal of Water and Land Development. Vol. 40 p. 67–80. DOI 10.2478/jwld-2019-0007. | spa |
dcterms.references | MOHEIMANI N.R., BOROWITZKA M.A., ISDEPSKY A., SING S.F. 2013. Standard methods for measuring growth of algae and their composition. In: Algae for biofuels and energy. Eds. M.A. Borowitzka, N.R. Moheimani. Dordrecht. Springer p. 265–284. | spa |
dcterms.references | OBETA M., OKAFOR U., NWANKWO C. 2019. Influence of discharged industrial effluents on the parameters of surface water in Onitsha urban area, southeastern Nigeria. Journal of Water and Land Development. No. 42 p. 136–142. DOI 10.2478/jwld-2019-0054. | spa |
dcterms.references | Oilgae 2017. Comprehensive report on attractive algae product opportunities [online]. Tamilnadu, India pp. 259. [Access 05.07.2020]. Available at: http://www.oilgae.com/ref/benefitsalgae-fuel-venture.html | spa |
dcterms.references | ONCEL S.S. 2013. Microalgae for a macroenergy world. Renewable Sustainable Energy Reviews. Vol. 26 p. 241–264. | spa |
dcterms.references | ORTÍZ M.D., GELVEZ J.H.S., PÉREZ M.E., GONZÁLEZ Á.D., BARAJAS A.F., URBINA N.A. 2017. Removal of organic pollutants from San Pablo Farm Wastewater using a pilot-scale biological treatment. Contemporary Engineering Sciences. Vol. 10. Iss. 34 p. 1685–1691. | spa |
dcterms.references | OUALI N., BELABED B., ZEGHDOUDI F., RACHEDI M. 2018. Assessment of metallic contamination in sediment and mullet fish (Mugil cephalus Linnaeus, 1758) tissues from the East Algerian coast. Journal of Water and Land Development. No. 38 p. 115–126. DOI 10.2478/jwld-2018-0048. | spa |
dcterms.references | RAWAT I., KUMAR R.R., MUTANDA T., BUX F. 2011. Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy. Vol. 88. Iss. 10 p. 3411–3424. | spa |
dcterms.references | RICHMOND A. 2004. Biological principles of mass cultivation. In: Handbook of microalgal culture: Biotechnology and Applied Phycology. Ed. A. Richmond. Oxford, UK. Blackwell p. 125–177. | spa |
dcterms.references | ROMERO ROJAS J.A. 1998. Tratamiento de aguas residuales. Teoria y principios de diseño [Wastewater treatment. Theory and principles of design]. Bogotá. Escuela Colombiana de Ingeniería. ISBN 958-8060-13-3 pp. 66. | spa |
dcterms.references | ROSA M., PERALTA J., BOSCO D. 2010. Estimación de parámetros cinéticos de la degradación aeróbica de efluentes lácteos usando Aquasim V 2.1b [Estimation of Kinetic Parameters of the Aerobic Degradation of Dairy Wastewater using AQUASIM v 2.1b]. Información Tecnológica. Vol. 21(3) p. 51–56. DOI 10.1612/inf. tecnol.4373it.09. | spa |
dcterms.references | ROSENBERG J.N., OYLER G.A., WILKINSON L., BETENBAUGH M.J. 2008. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Current Opinion in Biotechnology. Vol. 19 p. 430–436. DOI 10.1016/j.copbio.2008.07.008. | spa |
dcterms.references | SZE P. 1998. A biology of the algae. 3th ed. Columbus, OH. WCB/ McGraw-Hill. ISBN 0697219100 pp. 278. | spa |
dcterms.references | TAUSSKY H., SHORR E. 1953. A microcolorimetric method for determination of inorganic phosphorus. Journal of Biological Chemistry. Vol. 202 p. 675–685. | spa |
dcterms.references | TORRES D., SEPÚLVEDA S., ROA A. L., GELVEZ J., SUÁREZ N. 2017. Use of microalgae of Chlorophyta division in the biological treatment of acid drains of coal mines. Revista Colombiana de Biotecnología. Vol. 19(2) p. 95–104. DOI 10.15446/rev.colomb.biotec. v19N2.10429. | spa |
dcterms.references | URBINA-SUÁREZ N., LILIANA-PABÓN S., SUÁREZ-GÁLVEZ J. 2006. Tratamiento biologico de aguas residuales de matadero. Caso: Frigorifico La Frontera Ltda., Villa del Rosario, Norte de Santander [Biological treatment of slaughterhouse wastewater. Case: fridge La Frontera Ltda., Villa del Rosario, Norte de Santander]. Respuestas. Vol. 11. Iss. 2 p. 39–50. DOI 10.22463/ 0122820X.607. | spa |
dcterms.references | YANG C., HUA Q., SHIMIZU K. 2000. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochemical Engineering Journal. Vol. 6. Iss. 2 p. 87–102. DOI 10.1016/S1369-703X(00)00080-2. | spa |
dc.contributor.corporatename | JOURNAL OF WATER AND LAND DEVELOPMENT | spa |
dc.identifier.doi | 10.24425/jwld.2022.140387 | |
dc.identifier.eissn | 2083-4535 V | spa |
dc.relation.citationendpage | 179 | spa |
dc.relation.citationissue | 52 | spa |
dc.relation.citationstartpage | 172 | spa |
dc.relation.citationvolume | 2022 | spa |
dc.relation.ispartofjournal | Journal of Water and Land Development | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.subject.proposal | biological treatment | eng |
dc.subject.proposal | characterisation | eng |
dc.subject.proposal | microalgae | eng |
dc.subject.proposal | monitoring | eng |
dc.subject.proposal | nutrient wastewater | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |