Show simple item record

dc.contributor.authorRIVERA BERMUDEZ, INGRID PAOLA
dc.contributor.authorAlarcón Rodríguez1, V
dc.contributor.authorPeña Rodríguez, G
dc.description.abstractBy electrochemical anodization to titanium sheets, titanium dioxide nanostructures were sintered for 10 V and 20 V and times of 3 hours and 5 hours. For the electrolytic solution, 0.3 g of ammonium fluoride, 97 mL of ethylene glycol and 3 mL of distilled water were used. The sheets (51 mm × 21 mm × 0.4 mm) were treated using abrasive paper and cleaned with a 1:1 solution of ethanol water by means of ultrasound and dried using hot air. A stirring frequency of 300 rpm was used during anodizing. For the sintering of the titanium dioxide anatase phase, heat treatment was applied at 550 °C for 3 hours by means of an electric muffle, with heating speed of 10 °C/min. The crystallinity index, and the quantification of the sintered phases was carried out by means of X-ray diffraction, while the nanoporosities and their distribution were carried out using imageJ software to the images taken by means of scanning electron microscopy. For the photocatalytic treatment of the methylene blue dye in water, the titanium dioxide nanostructures that reported the highest anatase phase were used, where ultraviolet C radiation from a led lamp was applied for 4 direct hours. The efficiency in the removal of the dye was studied by UV-Vis spectrophotometry, finding the highest degradation of the dye for the wavelength of 644 nm.eng
dc.format.extent08 Páginasspa
dc.relation.ispartofJournal of Physics: Conference Series, Volume 2046, 5+1 International Meeting for Researchers in Materials and Plasma Technology (5+1 IMRMPT), 2 - 4 June 2021, Medellín, Colombia
dc.rightsPublished under licence by IOP Publishing Ltdeng
dc.titleElectrochemical synthesis of titanium dioxide nanostructures and its application in the in dye photocatalytic removaleng
dc.typeArtículo de revistaspa
dcterms.referencesBaan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Cogliano V 2006 Carcinogenicity of carbon black, titanium dioxide, and talc The Lancet Oncology 7(4) 295spa
dcterms.referencesBavykin D V, Friedrich J M, Walsh F C 2006 Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications Advanced Materials 18(21) 2807spa
dcterms.referencesMcCullagh C, Robertson J M, Bahnemann D W, Robertson P K 2007 The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review Research on Chemical Intermediates 33(3–5) 359spa
dcterms.referencesVandebriel R J, Vermeulen J P, van Engelen L B, de Jong B, Verhagen L M, de la Fonteyne-Blankestijn L J, Hoonakker M E, de Jong W H 2018 The crystal structure of titanium dioxide nanoparticles influences immune activity in vitro and in vivo Particle and Fibre Toxicology 15(1) 9spa
dcterms.referencesJafari S, Mahyad B, Hashemzadeh H, Janzafa S, Gholikhani T, Tayebi L 2020 Biomedical applications of TiO2 nanostructures: recent advances International Journal of Nanomedicine 15 3447spa
dcterms.referencesEsfahani R N, Khaghani S, Azizi A, Mortazaeinezhad F, Gomarian M 2020 Facile and eco-friendly synthesis of TiO2 NPs using extracts of Verbascum thapsus plant: an efficient photocatalyst for reduction of Cr (VI) ions in the aqueous solution Journal of the Iranian Chemical Society 17(1) 205spa
dcterms.referencesDamas Resende P, Rabelo Junqueira R M, Dornelas Silva J, Azevedo Lopes N I, Arruda Santos L, Lopes Buono V T 2020 Comparative study of nanostructured titania grown by electrochemical anodization of αTi and β-TiNi substrates in organic electrolytes Journal of Materials Research and Technology 9(5) 10121spa
dcterms.referencesGong D, Grimes C A, Varghese O K, Hu W, Singh R S, Chen Z, Dickey E C 2001 Titanium oxide nanotube arrays prepared by anodic oxidation Journal of Materials Research 16(12) 3331spa
dcterms.referencesYoo H, Kim M, Kim Y-T, Lee K, Choi J 2018 Catalyst-doped anodic TiO2 nanotubes: binder-free electrodes for (photo)electrochemical reactions Catalysts 8(11) 555spa
dcterms.referencesYung-Huang C, Yuan-Tsung C, Chien-Sheng H, Chia-Ling L, Shih-Hung L, Bohr-Ran H, Chih C 2018 Growth mechanism of self-assembled TixWyO nanotubes fabricated by TiW alloy anodization Journal of The Electrochemical Society 165(10) D477spa
dcterms.referencesKatal R, Masudy-Panah, S, Tanhaei M, Farahani M H, Jiangyong, H 2020 A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis Chem. Eng. J. 384 123384spa
dcterms.referencesBingham M, Mills A 2020 Photonic efficiency, and selectivity study of M (M = Pt, Pd, Au and Ag)/TiO2 photocatalysts for methanol reforming in the gas phase J. Photochem. Photobiol. A Chem. 389 112257spa
dcterms.referencesTarcea C I, Pantilimon C M, Matei E, Predescu A M, Berbecaru A C, Rapa M, Turcanu A, Predescu C 2020 Photocatalytic degradation of methylene blue dye using TiO2 and Fe3O4/SiO2/TiO2 as photocatalysts IOP Conf. Series: Materials Science and Engineering 877 012008spa
dcterms.referencesBakbolat B, Daulbayeb C, Sultanov F, Beissenov R, Umirzakov A, Mereke A, Bekbaev A, Chuprakov I 2020 Recent developments of TiO2-based photocatalysis in the hydrogen evolution and photodegradation: a review Nanomaterials 10 1790spa
dcterms.referencesTorres López C 2013 Fotocatálisis en Nanotubos Metaestables de TiO2 Sobre Electrodos de Ti para la Degradación de Naranja de Metilo (Querétaro: Centro de Investigación y Desarrollo Tecnológico en Electroquímica)spa
dcterms.referencesSopha H, Norikawa Y, Motola M, Hromadko L, Rodriguez J, Cerny J, Nohira T, Yasuda K, Macak J 2020 Anodization of electrodeposited titanium films towards TiO2 nanotube layers Electrochemistry Communications 118 106788spa
dcterms.referencesSiampiringue M, Massard C, Caudron E, Sibaud Y, Sarakha M, Awitor K 2016 Impact of annealing treatment on the behaviour of titanium dioxide nanotube layers Journal of Biomaterials and Nanobiotechnology 7 142spa
dcterms.referencesPark S, Baker J, Himmel M, Parilla P, Johnson D 2010 Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance Biotechnology for Biofuels 3 10spa
dcterms.referencesDubed Bandom G 2017 Síntesis y Caracterización Fisicoquímica y Fotoelectroquímica de Membranas de Nanotubos de TiO2 (MNTs-TiO2) Modificadas con Materiales Electrocatalíticos (Querétaro: Centro de Investigación y Desarrollo Tecnológico en Electroquímica)spa
dcterms.referencesReynaud Morales A G, Cuevas Arteaga C 2013 Preparación de nanoestructuras porosas de TiO2 por anodización a bajo potencial en electrólito acuoso de CH3COOH/HF Superficies y Vacío 26(2) 64spa
dcterms.referencesConcha Guzmán M O, Reynaud Morales A G, Cuevas Arteaga C, Rincón González M E 2010 Crecimiento de nanoestructuras de TiO2 obtenidas a bajo potencial por reacción anódica en soluciones ácidas H2SO4/HF Superficies y Vacío 23(S) 183spa
dcterms.referencesHoseinzadeh T, Ghorannevis Z, Ghoranneviss M, Sari A, Salem M 2017 Effects of various applied voltages on physical properties of TiO2 nanotubes by anodization method J. Theor. Appl. Phys. 11 243spa
dcterms.referencesMichalska-Domanska M, Łazinska M, Łukasiewicz J, Mol J, Durejko T 2020 Self-organized anodic oxides on titanium alloys prepared from glycol- and glycerol-based electrolytes Materials 13 4743spa
dcterms.referencesChernozem R V, Surmeneva M A, Surmenev R A 2016 Influence of anodization time and voltage on the parameters of TiO2 nanotubes IOP Conf. Series: Materials Science and Engineering 116 012025spa
dcterms.referencesNosrati R, Olad A, Shakoori S 2017 Preparation of an antibacterial, hydrophilic and photocatalytically active polyacrylic coating using TiO2 nanoparticles sensitized by graphene oxide Materials Science and Engineering C 80 642spa
dcterms.referencesXiong X, Tian R, Lin X, Chu D, Li S 2015 Formation and photocatalytic activity of BaTiO3 nanotubes via hydrothermal process Journal of Nanomaterials 16(1) 173spa
dcterms.referencesDinh V P, Huynh T D, Le H M, Nguyen V D, Dao V A, Hung N Q, Tuyen L A, Lee S, Yi J, Nguyen T D, Tan L V 2019 Insight into the adsorption mechanisms of methylene blue and chromium (III) from aqueous solution onto pomelo fruit pee Royal Society of Chemistry Advances 9 25847spa
dcterms.referencesTardivo J P, Del Giglio A, Santos de Oliveira C, Santesso Gabrielli D, Couto Junqueira H, Batista Tada D, Severino D, de Fatima Turchiello R, Baptista M 2005 Methylene blue in photodynamic therapy: from basic mechanisms to clinical application Photodiagnosis and Photodynamic Therapy 2 175spa
dcterms.referencesVásquez A L, Almanza O, Acosta M F, Tio B O 2016 Degradación fotocatalítica de contaminantes orgánicos presentes en agua residual de la industria litográfica mediante oxido de bismuto(III)/oxido de titanio (Bi2O3/TiO2) Información Tecnológica 27(1) 147spa
dc.contributor.corporatenameJournal of Physics: Conference Seriesspa
dc.publisher.placeReino Unidospa
dc.relation.citationeditionVol. 2049 N0.012041 (2021)spa
dc.relation.citationissue012041 (2021)spa
dc.relation.citesP Rivera Bermudez et al 2021 J. Phys.: Conf. Ser. 2046 012041
dc.relation.ispartofjournalJournal of Physics: Conference Seriesspa

Files in this item


This item appears in the following Collection(s)

Show simple item record

Published under licence by IOP Publishing Ltd
Except where otherwise noted, this item's license is described as Published under licence by IOP Publishing Ltd