Mostrar el registro sencillo del ítem

dc.contributor.authorGelves Gelves, Elizabeth
dc.contributor.authorNiño, L. Elisa
dc.contributor.authorMendoza, D
dc.date.accessioned2022-11-21T21:17:53Z
dc.date.available2022-11-21T21:17:53Z
dc.date.issued2021-09-12
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6572
dc.description.abstractTannase enzyme is a metabolite of great interest in the industry. Typical examples of its use can be found in wines and beer production, beverage and juice fruits clarification and leather production. However, tannase production on an industrial scale is limited to the operation batch mode. For this reason, its production is low and severe limitations take the place of being carried on a large scale. To improve production, this research proposes an operation strategy based on Fed-batch mode. The kinetic constants were taken from the literature to simulate trends obtained through a Feed-batch mode of operation. One of the most important findings of this research focuses on increasing tannase production with found values of 0.380 U/g. The latter indicates that tannase production could be almost twice the concentration obtained with the traditional batch mode (0.1900 U/g). Results obtained in this research may be promising for the enzyme production industry. Using computational techniques, it is possible to identify an improvement without investing in excessive experimentation and resources.eng
dc.format.extent09 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.relation.ispartofJournal of Physics: Conference Series. Vol. 2049 No.012091 (2021)
dc.rightsPublished under licence by IOP Publishing Ltdeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://iopscience.iop.org/article/10.1088/1742-6596/2049/1/012091spa
dc.titleDynamic Modeling of Tannase Production from Bacillus cereus: A Framework Simulation based on Fed Batch Strategyeng
dc.typeArtículo de revistaspa
dcterms.referencesBello A, Morales K, Sánchez L, Lidueñez V, Leal A and Gelves G 2020 Computational Implementation of Required Industrial Unit Operations for Bio-Plastic Production From Starch Extracted from Banana Peels by Aerobic Fermentation using Rizophus Oryzae Journal of Physics: Conference Series 1655 012078spa
dcterms.referencesPérez I and Tamayo J 2005 Aislamiento e Identificacion de Bacillus cereus a partir arroz Cocido en Condiciones Domésticas Revista Cubana de Química 17(1) 116spa
dcterms.referencesSchallmey M, Singh A and Ward O 2004 Developments in the use of Bacillus species for industrial production Canadian Journal of Microbiology 50(1) 1spa
dcterms.referencesCastillo A, Acuache K, Osorio A and Fuertes C 2009 Obtención de galato de n-propilo mediante trans-esterificación enzimática con tanino, propanol y tanasa inmovilización en quitina Revista de la Sociedad Química del Perú 75(4) 488spa
dcterms.referencesRodríguez L, Rodríguez N, Rodríguez N, Hernández M and Aguilar C 2009 Estudio de la inhibición de la enzima tanasa producida por Aspergillus niger GHI en fermentador en estado sólido. Revista autónoma de Tamaulipas 3(3) 65spa
dcterms.referencesMata M, Cruz M, Rodriguez R, Contreras J Aguilar C 1999 Evaluación de la actividad tanasa producida por A. niger GH1 en cultivo medio solido (CMS), a comparación of Methods to Determine Tanic Acil Hidrolase Activity Brazilian archives of Biology and tecnology 42(1) 355spa
dcterms.referencesAguilar P, Cruz M, Montañez J, Belmares R and Aguilar C 2014 Bacterial tannases: production, properties and applications tanasas bacterianas: producion, propiedades y aplicaciones. Medica Image Analusis 13(1) 63spa
dcterms.referencesAraque J, Niño L and Gelves G 2020 Industrial Scale Bioprocess Simulation for Ganoderma Lucidum Production using Superpro Designer Journal of Physics: Conference Series 1655 012077spa
dcterms.referencesVázquez D, Guerrero M, Viader J, Aguilar C and Rodriguez R 2016 Tannase production by the xerophilic Aspergillus niger GH1 strain and parcial isolation of the tannase gene Revista Mexicana de Ingeniería Química 15(1) 51spa
dcterms.referencesVázquez D, Guerrero M, Viader J, Aguilar C and Rodriguez R 2016 Tannase production by the xerophilic Aspergillus niger GH1 strain and parcial isolation of the tannase gene Revista Mexicana de Ingeniería Química 15(1) 51spa
dcterms.referencesCaicedo Y, Suarez C and Gelves G 2020 Evaluation of preliminary plant design for Chlorella vulgaris microalgae production focused on cosmetics purposes Journal of Physics: Conference. Series 1655 012086spa
dcterms.referencesIbañez A, Rolon Y and Gelves G 2020 Evaluating Cost-Effective Culture Media for Nutraceutics Production from Microalgae Using Computer-Aided Large Scale Predictions Journal of Physics: Conference. Series 1655 012082spa
dcterms.referencesNieto L, Rivera C and Gelves G 202 Economic Assessment of Itaconic Acid Production from Aspergillus Terreus using Superpro Designer Journal of Physics: Conference Series 1655 012100spa
dcterms.referencesSelvaraj S, Natarajan K, Nowak A and Ramachandra V 2016 Mathematical modeling and simulation of newly isolated Bacillus cereus M1GT for tannase production through semisolid state fermentation with agriculture residue tripala South African Journal of Chemical Engineering 35 89spa
dcterms.referencesPacheco S, Niño L and Gelves G 2020 Recombinant Anti-Thrombin Production from Saccharomyces Cerevisiae: Large Scale Trends Based on Computational Predictions Journal of Physics: Conference Series 1655 012081spa
dcterms.referencesHernandez S, Niño L, Gelves L 2020 Simulating of Microbial Growth Scale Up in a Stirred Tank Bioreactor for Aerobic Processes using Computational Fluid Dynamics Journal of Physics: Conference Series 1655 012109spa
dcterms.referencesChheda A and Vernekar M 2015 Enhancement of 𝜀���-poly-l-lysine (𝜀���-PL) production by a novel producer Bacillus cereus using metabolic precursors and glucose feeding 3 Biotech 5(5) 839spa
dc.contributor.corporatenameJournal of Physics: Conference Seriesspa
dc.identifier.doi10.1088/1742-6596/2049/1/012091
dc.publisher.placeReino Unidospa
dc.relation.citationeditionVol. 2049 N0.012091 (2021)spa
dc.relation.citationendpage8spa
dc.relation.citationissue012091 (2021)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolumeVol.2049spa
dc.relation.citesD Mendoza et al 2021 J. Phys.: Conf. Ser. 2049 012091
dc.relation.ispartofjournalJournal of Physics: Conference Seriesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Published under licence by IOP Publishing Ltd
Excepto si se señala otra cosa, la licencia del ítem se describe como Published under licence by IOP Publishing Ltd