Mostrar el registro sencillo del ítem

dc.contributor.authorRojas Suárez, Jhan Piero
dc.contributor.authorRomero-Garcia , Gonzalo
dc.contributor.authorVillada Castillo, Dora Clemencia
dc.date.accessioned2022-11-21T21:09:51Z
dc.date.available2022-11-21T21:09:51Z
dc.date.issued2022-01-19
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6571
dc.description.abstractThis article presents a comparison of energy generation using two methods of power production for different geographical locations. For this comparison, the HOMER software was used, which allows simulating generation systems with different energy sources. For the development of these simulations it was necessary to collect three parameters in the locations to be analyzed, which were wind speed, solar radiation and temperature. The photovoltaic array system was simulated using from 10 to 200 units with a constant value of one wind turbine, while for the wind turbine system, 1 to 9 units were used together with a constant value of 100 photovoltaic arrays. For the photovoltaic system, there is no major difference in the net project cost, the renewable fraction and the annual carbon dioxide production when using a greater number of arrays, but an increase in energy production is observed, a greater effect is obtained by changing the location of the system, analyzing the wind system a greater number of turbines increases the energy production, but also increase the annual carbon dioxide production and project cost, there is no significant difference between locations for the project cost the other parameters are affected. By using an optimization algorithm in the systems, the best performance was obtained in Puerto Bolivar using 105 photovoltaic arrays of 1kW and 3 wind turbines of 1.5MW.eng
dc.format.extent6spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInternational Journal of Energy Economics and Policyspa
dc.relation.ispartofInternational Journal of Energy Economics and Policy. vol 12 No°1[2022]
dc.rights© 2022 by the authorseng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://econjournals.com/index.php/ijeep/article/view/11864spa
dc.titleEconomic and Environmental Multiobjective Optimization of a Hybrid Power Generation System using Solar and Wind Energy Sourceeng
dc.typeArtículo de revistaspa
dcterms.referencesAbdul-Wahab, S., Mujezinovic, K., Al-Mahruqi, A.M. (2019), Optimal design and evaluation of a hybrid energy system for off-grid remote Area. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1, 1-13.spa
dcterms.referencesAl Ghaithi, H.M., Fotis, G.P., Vita, V. (2017). Techno-economic assessment of hybrid energy off-grid system-a case study for Masirah Island in Oman. International Journal of Power and Energy Research, 1(2), 1-10.spa
dcterms.referencesCalderón, S., Alvarez, A.C., Loboguerrero, A.M., Arango, S., Calvin, K., Kober, T., Daenzer, K., Fisher-Vanden, K. (2016), Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets. Energy Economics, 56, 575-86.spa
dcterms.referencesCapellán-Pérez, I., Campos-Celador, A., Terés-Zubiaga, J. (2018), Renewable energy cooperatives as an instrument towards the energy transition in Spain. Energy Policy 123, 215-229.spa
dcterms.referencesCarvajal-Romo, G., Valderrama-Mendoza, M., Rodríguez-Urrego, D., Rodríguez-Urrego, L. (2019), Assessment of solar and wind energy potential in La Guajira, Colombia: Current status, and future prospects. Sustainable Energy Technologies and Assessments, 36, 100531.spa
dcterms.referencesHaghighat Mamaghani, A., Escandon, S.A.A., Najafi, B., Shirazi, A., Rinaldi, F. (2016), Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia. Renewable Energy, 97, 293-305.spa
dcterms.referencesIEA. (2019), World Energy Outlook 2019 エ. World Energy Outlook Sereies. Available form: https://www.iea.org/reports/world-energyoutlook-2019spa
dcterms.referencesLi, H.X., Edwards, D.J., Hosseini, M.R., Costin, G.P. (2020), A review on renewable energy transition in Australia: An updated depiction. Journal of Cleaner Production, 242, 118475.spa
dcterms.referencesNieves, J.A., Aristizábal, A.J., Dyner, I., Báez, O., Ospina, D.H. (2019), Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application. Energy, 169, 380-397.spa
dcterms.referencesRam, M., Aghahosseini, A., Breyer, C. (2020), Job creation during the global energy transition towards 100% renewable power system by 2050. Technological Forecasting and Social Change, 151, 119682.spa
dcterms.referencesSadiqa, A., Gulagi, A., Breyer, C. (2018), Energy transition roadmap towards 100% renewable energy and role of storage technologies for Pakistan by 2050. Energy, 147, 518-533.spa
dcterms.referencesStrambo, C., Espinosa, A.C.G. (2020), Extraction and development: Fossil fuel production narratives and counternarratives in Colombia. Climate Policy, 20(8), 931-948.spa
dcterms.referencesValencia, G., Benavides, A., Cárdenas, Y. (2019), Economic and environmental multiobjective optimization of a wind-solar-fuel cell hybrid energy system in the Colombian Caribbean region. Energies, 12(11), 2119.spa
dc.contributor.corporatenameInternational Journal of Energy Economics and Policyspa
dc.identifier.doihttps://doi.org/10.32479/ijeep.11864
dc.publisher.placeTurquíaspa
dc.relation.citationeditionVol. 12 No° 1 [2022]spa
dc.relation.citationendpage499spa
dc.relation.citationissue1[2022]spa
dc.relation.citationstartpage494spa
dc.relation.citationvolume12spa
dc.relation.citesRojas, J. P., García, G. R., & Castillo, D. V. (2022). Economic and Environmental Multiobjective Optimization of a Hybrid Power Generation System using Solar and Wind Energy Source. International Journal of Energy Economics and Policy, 12(1), 494–499. https://doi.org/10.32479/ijeep.11864
dc.relation.ispartofjournalInternational Journal of Energy Economics and Policyspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalRenewable Energieseng
dc.subject.proposalSolar Energy,eng
dc.subject.proposalWind Energyeng
dc.subject.proposalHybrid Energy System,eng
dc.subject.proposalMultiobjective Optimizationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2022 by the authors
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 by the authors