Mostrar el registro sencillo del ítem
Evaluation of the Light/Dark Cycle and Concentration of Tannery Wastewater in the Production of Biomass and Metabolites of Industrial Interest from Microalgae and Cyanobacteria
dc.contributor.author | Urbina-Suarez, Nestor Andres | |
dc.contributor.author | Ayala González, Darly D. | |
dc.contributor.author | Rivera Amaya, Jennyfer D. | |
dc.contributor.author | Barajas Solano, andres F | |
dc.contributor.author | Machuca-Martinez, Fiderman | |
dc.date.accessioned | 2022-11-21T20:51:35Z | |
dc.date.available | 2022-11-21T20:51:35Z | |
dc.date.issued | 2022-01-25 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6570 | |
dc.description.abstract | The tanning industry transforms animal skins into leather and produces liquid effluents with a high organic and inorganic pollutant load. This work evaluated the effect of the tannery wastewater (TWW) concentration and the light/dark cycle on the production of biomass, carbohydrates, proteins, lipids, and pigments (carotenoids and phycobiliproteins) on two microalgae (Chlorella sp. and Scenedesmus sp.) and one cyanobacterium (Hapalosiphon sp.). A non-factorial central experimental design with a response surface was implemented using the STATISTICA 7.0 software. High removal percentages for nitrates (97%), phosphates (73.3%), and chemical oxygen demand (93.2%) were achieved with the three strains. The results also highlight that the use of a constant light regime (24:0) and the concentration of real TWW affect the biomass production, since the highest concentration of biomass recorded was 1.31 g L−1 of Hapalosiphon sp. with 100% undiluted wastewater. | eng |
dc.format.extent | 14 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Water | spa |
dc.relation.ispartof | Water. Vol 14 No°3[2022] | |
dc.rights | © 2022 by the authors | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://www.scopus.com/record/display.uri?eid=2-s2.0-85123714863&doi=10.3390%2fw14030346&origin=inward&txGid=b987a9f83f260154dcca58135c641b66 | spa |
dc.title | Evaluation of the Light/Dark Cycle and Concentration of Tannery Wastewater in the Production of Biomass and Metabolites of Industrial Interest from Microalgae and Cyanobacteria | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Urbina-Suarez, N.A.; Machuca-Martínez, F.; Barajas-Solano, A.F. Advanced Oxidation Processes and Biotechnological Alternatives for the Treatment of Tannery Wastewater. Molecules 2021, 26, 3222. | spa |
dcterms.references | Yahya, M.D.; Obayomi, K.S.; Abdulkadir, M.B.; Iyaka, Y.A.; Olugbenga, A.G. Characterization of Cobalt Ferrite-Supported Activated Carbon for Removal of Chromium and Lead Ions from Tannery Wastewater via Adsorption Equilibrium. Water Sci. Eng. 2020, 13, 202–213. | spa |
dcterms.references | Lofrano, G.; Belgiorno, V.; Gallo, M.; Raimo, A.; Meriç, S. Toxicity reduction in leather tanning wastewater by improved coagulation flocculation process. Glob. NEST J. 2006, 8, 151–158. | spa |
dcterms.references | Lv, W.; Zhao, K.; Ma, S.; Kong, L.; Dang, Z.; Chen, J.; Zhang, Y.; Hu, J. Process of Removing Heavy Metal Ions and Solids Suspended in Micro-Scale Intensified by Hydrocyclone. J. Clean. Prod. 2020, 263, 121533. | spa |
dcterms.references | Mayta, R.; Mayta, J. Remoción de Cromo y Demanda Química de Oxígeno de Aguas Residuales de Curtiembre Por Electrocoagulación. Rev. Soc. Química Perú 2017, 83, 331–340. Available online: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid= S1810-634X2017000300008 (accessed on 22 March 2021). | spa |
dcterms.references | Castellanos-Estupiñan, M.A.; Sánchez-Galvis, E.M.; García-Martínez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F. Design of an Electroflotation System for the Concentration and Harvesting of Freshwater Microalgae. Chem. Eng. Trans. 2018, 64, 1–6. | spa |
dcterms.references | Belay, A. Impacts of Chromium from Tannery Effluent and Evaluation of Alternative Treatment Options. J. Environ. Prot. 2010, 1, 53–58. | spa |
dcterms.references | Najam, T.; Shah, S.S.A.; Rahman, M.M. Chapter 24—Water-Stable Metal–Organic Framework for Environmental Remediation; Saxena, G., Kumar, V., Shah, M.P.B.T.-B., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 585–621. | spa |
dcterms.references | Cuéllar-García, D.J.; Rangel-Basto, Y.A.; Urbina-Suarez, N.A.; Barajas-Solano, A.F.; Muñoz-Peñaloza, Y.A. Lipids Production from Scenedesmus Obliquus through Carbon/Nitrogen Ratio Optimization. J. Phys. Conf. Ser. 2019, 1388, 012043. | spa |
dcterms.references | Sanchez-Galvis, E.M.; Cardenas-Gutierrez, I.Y.; Contreras-Ropero, J.E.; García-Martínez, J.B.; Barajas-Solano, A.F.; Zuorro, A. An Innovative Low-Cost Equipment for Electro-Concentration of Microalgal Biomass. Appl. Sci. 2020, 10, 4841. | spa |
dcterms.references | García, D.J.C.; Rangel-Basto, Y.A.; Barajas-Solano, A.F.; Muñoz-Peñalosa, Y.A.; Urbina-Suarez, N.A. Towards the Production of Microalgae Biofuels: The Effect of the Culture Medium on Lipid Deposition. Biotechnologia 2019, 100, 273–278. | spa |
dcterms.references | Barajas-Solano, A.F.; Gonzalez-Delgado, A.D.; Kafarov, V. Effect of Thermal Pre-Treatment on Fermentable Sugar Production of Chlorella Vulgaris. Chem. Eng. Trans. 2014, 37, 655–660. | spa |
dcterms.references | Oncel, S.S. Microalgae for a Macroenergy World. Renew. Sustain. Energy Rev. 2013, 26, 241–264. | spa |
dcterms.references | Chisti, Y. Biodiesel from Microalgae. Biotechnol. Adv. 2007, 25, 294–306. | spa |
dcterms.references | Lardon, L.; Hélias, A.; Sialve, B.; Steyer, J.P.; Bernard, O. Life-Cycle Assessment of Biodiesel Production from Microalgae. Environ. Sci. Technol. 2009, 43, 6475–6481. | spa |
dcterms.references | Benemann, J.; Woertz, I.; Lundquist, T. Life Cycle Assessment for Microalgae Oil Production. Disruptive Sci. Technol. 2012, 1, 68–78. | spa |
dcterms.references | de Carvalho, J.C.; Borghetti, I.A.; Cartas, L.C.; Woiciechowski, A.L.; Soccol, V.T.; Soccol, C.R. Biorefinery Integration of Microalgae Production into Cassava Processing Industry: Potential and Perspectives. Bioresour. Technol. 2018, 247, 1165–1172. | spa |
dcterms.references | Chen, Y.D.; Ho, S.H.; Nagarajan, D.; Ren, N.Q.; Chang, J.S. Waste Biorefineries—Integrating Anaerobic Digestion and Microalgae Cultivation for Bioenergy Production. Curr. Opin. Biotechnol. 2018, 50, 101–110. | spa |
dcterms.references | Guiza Franco, L.; Orozco Rojas, L.G.; Sánchez Galvis, E.M.; García Martínez, J.B.; Barajas Ferreira, C.; Zuorro, A.; Barajas Solano, A.F. Production of Chlorella Vulgaris Biomass on UV-Treated Wastewater as an Alternative for Environmental Sustainability on High-Mountain Fisheries. Chem. Eng. Trans. 2018, 64, 517–522. | spa |
dcterms.references | Quintero-Dallos, V.; García-Martínez, J.B.; Contreras-Ropero, J.E.; Barajas-Solano, A.F.; Barajas-Ferrerira, C.; Lavecchia, R.; Zuorro, A. Vinasse as a Sustainable Medium for the Production of Chlorella Vulgaris UTEX 1803. Water 2019, 11, 1526. | spa |
dcterms.references | Ansari, F.A.; Gupta, S.K.; Nasr, M.; Rawat, I.; Bux, F. Evaluation of Various Cell Drying and Disruption Techniques for Sustainable Metabolite Extractions from Microalgae Grown in Wastewater: A Multivariate Approach. J. Clean. Prod. 2018, 182, 634–643. | spa |
dcterms.references | Behera, M.; Dhali, D.; Chityala, S.; Mandal, T.; Bhattacharya, P.; Mandal, D.D. Evaluation of Performance of Planococcus Sp. TRC1 an Indigenous Bacterial Isolate Monoculture as Bioremediator for Tannery Effluent. Desalin. Water Treat. 2016, 57, 13213–13224. | spa |
dcterms.references | Ajayan, K.V.; Selvaraju, M.; Unnikannan, P.; Sruthi, P. Phycoremediation of Tannery Wastewater Using Microalgae Scenedesmus Species. Int. J. Phytoremediat. 2015, 17, 907–916. | spa |
dcterms.references | Sánchez, S.; Martínez, M.E.; Espejo, M.T.; Pacheco, R.; Espinola, F.; Hodaifa, G. Mixotrophic Culture of Chlorella Pyrenoidosa with Olive-Mill Wastewater as the Nutrient Medium. J. Appl. Phycol. 2001, 13, 443–449. | spa |
dcterms.references | Da Fontoura, J.T.; Rolim, G.S.; Mella, B.; Farenzena, M.; Gutterres, M. Defatted Microalgal Biomass as Biosorbent for the Removal of Acid Blue 161 Dye from Tannery Effluent. J. Environ. Chem. Eng. 2017, 5, 5076–5084. | spa |
dcterms.references | Ardila, L.; Godoy, R.; Montenegro, L. Sorption Capacity Measurement of Chlorella Vulgaris and Scenedesmus Acutus to Remove Chromium from Tannery Waste Water. IOP Conf. Ser. Earth Environ. Sci. 2017, 83, 012031. | spa |
dcterms.references | Pena, A.D.D.C.; Bertoldi, C.F.; da Fontoura, J.T.; Trierweiler, L.F.; Gutterres, M. Consortium of Microalgae for Tannery Effluent Treatment. Braz. Arch. Biol. Technol. 2019, 62, 1–10. | spa |
dcterms.references | Nagabalaji, V.; Sivasankari, G.; Srinivasan, S.V.; Suthanthararajan, R.; Ravindranath, E. Nutrient Removal from Synthetic and Secondary Treated Sewage and Tannery Wastewater through Phycoremediation. Environ. Technol. 2019, 40, 784–792. | spa |
dcterms.references | Zainith, S.; Saxena, G.; Kishor, R.; Bharagava, R.N. Application of Microalgae in Industrial Effluent Treatment, Contaminants Removal, and Biodiesel Production: Opportunities, Challenges, and Future Prospects. In Bioremediation for Environmental Sustainability: Toxicity, Mechanisms of Contaminants Degradation, Detoxification, and Challenges; Elsevier: Amsterdam, The Netherlands, 2020; pp. 481–517. | spa |
dcterms.references | Pena, A.C.C.; Agustini, C.B.; Trierweiler, L.F.; Gutterres, M. Influence of Period Light on Cultivation of Microalgae Consortium for the Treatment of Tannery Wastewaters from Leather Finishing Stage. J. Clean. Prod. 2020, 263, 121618. | spa |
dcterms.references | Baird, R.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. | spa |
dcterms.references | Kurniawati, P.; Gusrianti, R.; Dwisiwi, B.B.; Purbaningtias, T.E.; Wiyantoko, B. Verification of Spectrophotometric Method for Nitrate Analysis in Water Samples. AIP Conf. Proc. 2017, 1911, 020012. | spa |
dcterms.references | Moheimani, N.R.; Webb, J.P.; Borowitzka, M.A. Bioremediation and Other Potential Applications of Coccolithophorid Algae: A Review. Algal Res. 2012, 1, 120–133. | spa |
dcterms.references | Slocombe, S.P.; Ross, M.; Thomas, N.; McNeill, S.; Stanley, M.S. A Rapid and General Method for Measurement of Protein in Micro-Algal Biomass. Bioresour. Technol. 2013, 129, 51–57. | spa |
dcterms.references | Frings, C.S.; Dunn, R.T. A Colorimetric Method for Determination of Total Serum Lipids Based on the Sulfo-Phospho-Vanillin Reaction. Am. J. Clin. Pathol. 1970, 53, 89–91. | spa |
dcterms.references | Pˇribyl, P.; Cepák, V.; Kaštánek, P.; Zachleder, V. Elevated Production of Carotenoids by a New Isolate of Scenedesmus Sp. Algal Res. 2015, 11, 22–27. | spa |
dcterms.references | Bennett, A.; Bogobad, L. Complementary Chromatic Adaptation in a Filamentous Blue-Green Alga. J. Cell Biol. 1973, 58, 419–435. | spa |
dcterms.references | Berkes, F. Evolution of Co-Management: Role of Knowledge Generation, Bridging Organizations and Social Learning. J. Environ. Manag. 2009, 90, 1692–1702. | spa |
dcterms.references | Genawi, N.M.; Ibrahim, M.H.; El-Naas, M.H.; Alshaik, A.E. Chromium Removal from Tannery Wastewater by Electrocoagulation: Optimization and Sludge Characterization. Water 2020, 12, 1374. | spa |
dcterms.references | Das, C.; Naseera, K.; Ram, A.; Meena, R.M.; Ramaiah, N. Bioremediation of Tannery Wastewater by a Salt-Tolerant Strain of Chlorella Vulgaris. J. Appl. Phycol. 2017, 29, 235–243. | spa |
dcterms.references | Goswami, S.; Mazumder, D. Treatment of Chrome Tannery Wastewater by Biological Process—A Mini Review. World Acad. Sci. Eng. Technol. Int. J. Environ. Ecol. Eng. 2013, 7, 798–804. | spa |
dcterms.references | Meenachi, S.; Kandasamy, S. Investigation of Tannery Liming Waste Water Using Green Synthesised Iron Oxide Nano Particles. Int. J. Environ. Anal. Chem. 2019, 99, 1286–1297. | spa |
dcterms.references | Ullah, R.; Ahmad, W.; Ahmad, I.; Khan, M.; Khattak, M.I.; Hussain, F. Adsorption and Recovery of Hexavalent Chromium from Tannery Wastewater over Magnetic Max Phase Composite. Sep. Sci. Technol. 2021, 56, 439–452. | spa |
dcterms.references | Le Luu, T. Tannery Wastewater Treatment after Activated Sludge Pre-Treatment Using Electro-Oxidation on Inactive Anodes. Clean Technol. Environ. Policy 2020, 22, 1701–1713. | spa |
dcterms.references | Pal, M.; Malhotra, M.; Mandal, M.K.; Paine, T.K.; Pal, P. Recycling of Wastewater from Tannery Industry through MembraneIntegrated Hybrid Treatment Using a Novel Graphene Oxide Nanocomposite. J. Water Process Eng. 2020, 36, 101324. | spa |
dcterms.references | Zhou, L.; Zhang, W.; De Costa, Y.G.; Zhuang, W.Q.; Yi, S. Assessing Inorganic Components of Cake Layer in A/O Membrane Bioreactor for Physical-Chemical Treated Tannery Effluent. Chemosphere 2020, 250, 126220. | spa |
dcterms.references | Saeed, T.; Afrin, R.; Muyeed, A.A.; Sun, G. Treatment of Tannery Wastewater in a Pilot-Scale Hybrid Constructed Wetland System in Bangladesh. Chemosphere 2012, 88, 1065–1073. | spa |
dcterms.references | Huang, W.; Shao, H.; Zhou, S.; Zhou, Q.; Li, W.; Xing, W. Modulation of Cadmium-Induced Phytotoxicity in Cabomba Caroliniana by Urea Involves Photosynthetic Metabolism and Antioxidant Status. Ecotoxicol. Environ. Saf. 2017, 144, 88–96. | spa |
dcterms.references | Selvan, S.T.; Velramar, B.; Ramamurthy, D.; Balasundaram, S.; Sivamani, K. Pilot Scale Wastewater Treatment, CO2 Sequestration and Lipid Production Using Microalga, Neochloris Aquatica RDS02. Int. J. Phytoremediat. 2020, 22, 1462–1479. | spa |
dcterms.references | Bellén, M.; Hernández, L.; Parra, D.; Vega, A.; Pérez, K. Using Scenedesmus Sp. for the Phycoremediation of Tannery Wastewater. Tecciencia 2016, 12, 69–75. | spa |
dcterms.references | Kozik, V.; Barbusinski, K.; Thomas, M.; Sroda, A.; Jampilek, J.; Sochanik, A.; Smolinski, A.; Bak, A. Taguchi Method and Response Surface Methodology in the Treatment of Highly Contaminated Tannery Wastewater Using Commercial Potassium Ferrate. Materials 2019, 12, 3784. | spa |
dcterms.references | Alemu, T.; Mekonnen, A.; Leta, S. Integrated Tannery Wastewater Treatment for Effluent Reuse for Irrigation: Encouraging Water Efficiency and Sustainable Development in Developing Countries. J. Water Process Eng. 2019, 30, 100514. | spa |
dcterms.references | Yadav, A.; Raj, A.; Purchase, D.; Ferreira, L.F.R.; Saratale, G.D.; Bharagava, R.N. Phytotoxicity, Cytotoxicity and Genotoxicity Evaluation of Organic and Inorganic Pollutants Rich Tannery Wastewater from a Common Effluent Treatment Plant (CETP) in Unnao District, India Using Vigna Radiata and Allium Cepa. Chemosphere 2019, 224, 324–332. | spa |
dcterms.references | Bharagava, R.N.; Saxena, G.; Mulla, S.I.; Patel, D.K. Characterization and Identification of Recalcitrant Organic Pollutants (ROPs) in Tannery Wastewater and Its Phytotoxicity Evaluation for Environmental Safety. Arch. Environ. Contam. Toxicol. 2018, 75, 259–272. | spa |
dcterms.references | Dunn, K.; Maart, B.; Rose, P. Arthrospira (Spirulina) in Tannery Wastewaters. Part 2: Evaluation of Tannery Wastewater as Production Media for the Mass Culture of Arthrospira Biomass. Water SA 2013, 39, 279–284. | spa |
dcterms.references | Saranya, D.; Shanthakumar, S. Effect of Culture Conditions on Biomass Yield of Acclimatized Microalgae in Ozone Pre-Treated Tannery Effluent: A Simultaneous Exploration of Bioremediation and Lipid Accumulation Potential. J. Environ. Manag. 2020, 273, 111129. | spa |
dcterms.references | Reyes-Serrano, A.; López-Alejo, J.E.; Hernández-Cortázar, M.A.; Elizalde, I. Removing Contaminants from Tannery Wastewater by Chemical Precipitation Using CaO and Ca(OH)2 . Chin. J. Chem. Eng. 2020, 28, 1107–1111. | spa |
dcterms.references | González-Fernández, C.; Ballesteros, M. Linking Microalgae and Cyanobacteria Culture Conditions and Key-Enzymes for Carbohydrate Accumulation. Biotechnol. Adv. 2012, 30, 1655–1661. | spa |
dcterms.references | Sutherland, D.L.; Ralph, P.J. Microalgal Bioremediation of Emerging Contaminants—Opportunities and Challenges. Water Res. 2019, 164, 114921. | spa |
dcterms.references | Choi, S.; Song, C.W.; Shin, J.H.; Lee, S.Y. Biorefineries for the Production of Top Building Block Chemicals and Their Derivatives. Metab. Eng. 2015, 28, 223–239. | spa |
dcterms.references | Salama, E.S.; Kurade, M.B.; Abou-Shanab, R.A.I.; El-Dalatony, M.M.; Yang, I.S.; Min, B.; Jeon, B.H. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew. Sustain. Energy Rev. 2017, 79, 1189–1211. | spa |
dcterms.references | Sforza, E.; Kumkum, P.; Barbera, E.; Kumar, S. Bioremediation of industrial effluents: How a biochar pretreatment may increase the microalgal growth in tannery wastewater. J. Water Process Eng. 2020, 37, 101431. | spa |
dcterms.references | Cho, H.D.; Kim, E.Y.; Hung, Y.-T. Heavy metal removal by microbial bio sorbents. In Handbook of Environmental Engineering: Environmental Bioingenieering; Humana Press: Totowa, NJ, USA, 2010; pp. 375–402. | spa |
dcterms.references | Gendy, T.S.; El-Temtamy, S.A. Commercialization potential aspects of microalgae for biofuel production: An overview. Egypt. J. Pet. 2013, 22, 43–51. | spa |
dc.contributor.corporatename | Water | spa |
dc.identifier.doi | https:// doi.org/10.3390/w14030346 | |
dc.publisher.place | Suiza | spa |
dc.relation.citationedition | Vol. 14 No° 3 [2022] | spa |
dc.relation.citationendpage | 14 | spa |
dc.relation.citationissue | 3[2022] | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 14 | spa |
dc.relation.cites | Urbina-Suarez, N.A.; Ayala-González, D.D.; Rivera-Amaya, J.D.; Barajas-Solano, A.F.; Machuca-Martínez, F. Evaluation of the Light/Dark Cycle and Concentration of Tannery Wastewater in the Production of Biomass and Metabolites of Industrial Interest from Microalgae and Cyanobacteria. Water 2022, 14, 346. https:// doi.org/10.3390/w14030346 | |
dc.relation.ispartofjournal | Water | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | microalgae | eng |
dc.subject.proposal | tannery effluents | eng |
dc.subject.proposal | carbohydrates | eng |
dc.subject.proposal | lipids | eng |
dc.subject.proposal | proteins | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Ambiente y Vida - GIAV [124]