Mostrar el registro sencillo del ítem

dc.contributor.authorUrbina-Suarez, Nestor Andres
dc.contributor.authorAyala González, Darly D.
dc.contributor.authorRivera Amaya, Jennyfer D.
dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorMachuca-Martinez, Fiderman
dc.date.accessioned2022-11-21T20:51:35Z
dc.date.available2022-11-21T20:51:35Z
dc.date.issued2022-01-25
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6570
dc.description.abstractThe tanning industry transforms animal skins into leather and produces liquid effluents with a high organic and inorganic pollutant load. This work evaluated the effect of the tannery wastewater (TWW) concentration and the light/dark cycle on the production of biomass, carbohydrates, proteins, lipids, and pigments (carotenoids and phycobiliproteins) on two microalgae (Chlorella sp. and Scenedesmus sp.) and one cyanobacterium (Hapalosiphon sp.). A non-factorial central experimental design with a response surface was implemented using the STATISTICA 7.0 software. High removal percentages for nitrates (97%), phosphates (73.3%), and chemical oxygen demand (93.2%) were achieved with the three strains. The results also highlight that the use of a constant light regime (24:0) and the concentration of real TWW affect the biomass production, since the highest concentration of biomass recorded was 1.31 g L−1 of Hapalosiphon sp. with 100% undiluted wastewater.eng
dc.format.extent14spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherWaterspa
dc.relation.ispartofWater. Vol 14 No°3[2022]
dc.rights© 2022 by the authorseng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.scopus.com/record/display.uri?eid=2-s2.0-85123714863&doi=10.3390%2fw14030346&origin=inward&txGid=b987a9f83f260154dcca58135c641b66spa
dc.titleEvaluation of the Light/Dark Cycle and Concentration of Tannery Wastewater in the Production of Biomass and Metabolites of Industrial Interest from Microalgae and Cyanobacteriaeng
dc.typeArtículo de revistaspa
dcterms.referencesUrbina-Suarez, N.A.; Machuca-Martínez, F.; Barajas-Solano, A.F. Advanced Oxidation Processes and Biotechnological Alternatives for the Treatment of Tannery Wastewater. Molecules 2021, 26, 3222.spa
dcterms.referencesYahya, M.D.; Obayomi, K.S.; Abdulkadir, M.B.; Iyaka, Y.A.; Olugbenga, A.G. Characterization of Cobalt Ferrite-Supported Activated Carbon for Removal of Chromium and Lead Ions from Tannery Wastewater via Adsorption Equilibrium. Water Sci. Eng. 2020, 13, 202–213.spa
dcterms.referencesLofrano, G.; Belgiorno, V.; Gallo, M.; Raimo, A.; Meriç, S. Toxicity reduction in leather tanning wastewater by improved coagulation flocculation process. Glob. NEST J. 2006, 8, 151–158.spa
dcterms.referencesLv, W.; Zhao, K.; Ma, S.; Kong, L.; Dang, Z.; Chen, J.; Zhang, Y.; Hu, J. Process of Removing Heavy Metal Ions and Solids Suspended in Micro-Scale Intensified by Hydrocyclone. J. Clean. Prod. 2020, 263, 121533.spa
dcterms.referencesMayta, R.; Mayta, J. Remoción de Cromo y Demanda Química de Oxígeno de Aguas Residuales de Curtiembre Por Electrocoagulación. Rev. Soc. Química Perú 2017, 83, 331–340. Available online: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid= S1810-634X2017000300008 (accessed on 22 March 2021).spa
dcterms.referencesCastellanos-Estupiñan, M.A.; Sánchez-Galvis, E.M.; García-Martínez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F. Design of an Electroflotation System for the Concentration and Harvesting of Freshwater Microalgae. Chem. Eng. Trans. 2018, 64, 1–6.spa
dcterms.referencesBelay, A. Impacts of Chromium from Tannery Effluent and Evaluation of Alternative Treatment Options. J. Environ. Prot. 2010, 1, 53–58.spa
dcterms.referencesNajam, T.; Shah, S.S.A.; Rahman, M.M. Chapter 24—Water-Stable Metal–Organic Framework for Environmental Remediation; Saxena, G., Kumar, V., Shah, M.P.B.T.-B., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 585–621.spa
dcterms.referencesCuéllar-García, D.J.; Rangel-Basto, Y.A.; Urbina-Suarez, N.A.; Barajas-Solano, A.F.; Muñoz-Peñaloza, Y.A. Lipids Production from Scenedesmus Obliquus through Carbon/Nitrogen Ratio Optimization. J. Phys. Conf. Ser. 2019, 1388, 012043.spa
dcterms.referencesSanchez-Galvis, E.M.; Cardenas-Gutierrez, I.Y.; Contreras-Ropero, J.E.; García-Martínez, J.B.; Barajas-Solano, A.F.; Zuorro, A. An Innovative Low-Cost Equipment for Electro-Concentration of Microalgal Biomass. Appl. Sci. 2020, 10, 4841.spa
dcterms.referencesGarcía, D.J.C.; Rangel-Basto, Y.A.; Barajas-Solano, A.F.; Muñoz-Peñalosa, Y.A.; Urbina-Suarez, N.A. Towards the Production of Microalgae Biofuels: The Effect of the Culture Medium on Lipid Deposition. Biotechnologia 2019, 100, 273–278.spa
dcterms.referencesBarajas-Solano, A.F.; Gonzalez-Delgado, A.D.; Kafarov, V. Effect of Thermal Pre-Treatment on Fermentable Sugar Production of Chlorella Vulgaris. Chem. Eng. Trans. 2014, 37, 655–660.spa
dcterms.referencesOncel, S.S. Microalgae for a Macroenergy World. Renew. Sustain. Energy Rev. 2013, 26, 241–264.spa
dcterms.referencesChisti, Y. Biodiesel from Microalgae. Biotechnol. Adv. 2007, 25, 294–306.spa
dcterms.referencesLardon, L.; Hélias, A.; Sialve, B.; Steyer, J.P.; Bernard, O. Life-Cycle Assessment of Biodiesel Production from Microalgae. Environ. Sci. Technol. 2009, 43, 6475–6481.spa
dcterms.referencesBenemann, J.; Woertz, I.; Lundquist, T. Life Cycle Assessment for Microalgae Oil Production. Disruptive Sci. Technol. 2012, 1, 68–78.spa
dcterms.referencesde Carvalho, J.C.; Borghetti, I.A.; Cartas, L.C.; Woiciechowski, A.L.; Soccol, V.T.; Soccol, C.R. Biorefinery Integration of Microalgae Production into Cassava Processing Industry: Potential and Perspectives. Bioresour. Technol. 2018, 247, 1165–1172.spa
dcterms.referencesChen, Y.D.; Ho, S.H.; Nagarajan, D.; Ren, N.Q.; Chang, J.S. Waste Biorefineries—Integrating Anaerobic Digestion and Microalgae Cultivation for Bioenergy Production. Curr. Opin. Biotechnol. 2018, 50, 101–110.spa
dcterms.referencesGuiza Franco, L.; Orozco Rojas, L.G.; Sánchez Galvis, E.M.; García Martínez, J.B.; Barajas Ferreira, C.; Zuorro, A.; Barajas Solano, A.F. Production of Chlorella Vulgaris Biomass on UV-Treated Wastewater as an Alternative for Environmental Sustainability on High-Mountain Fisheries. Chem. Eng. Trans. 2018, 64, 517–522.spa
dcterms.referencesQuintero-Dallos, V.; García-Martínez, J.B.; Contreras-Ropero, J.E.; Barajas-Solano, A.F.; Barajas-Ferrerira, C.; Lavecchia, R.; Zuorro, A. Vinasse as a Sustainable Medium for the Production of Chlorella Vulgaris UTEX 1803. Water 2019, 11, 1526.spa
dcterms.referencesAnsari, F.A.; Gupta, S.K.; Nasr, M.; Rawat, I.; Bux, F. Evaluation of Various Cell Drying and Disruption Techniques for Sustainable Metabolite Extractions from Microalgae Grown in Wastewater: A Multivariate Approach. J. Clean. Prod. 2018, 182, 634–643.spa
dcterms.referencesBehera, M.; Dhali, D.; Chityala, S.; Mandal, T.; Bhattacharya, P.; Mandal, D.D. Evaluation of Performance of Planococcus Sp. TRC1 an Indigenous Bacterial Isolate Monoculture as Bioremediator for Tannery Effluent. Desalin. Water Treat. 2016, 57, 13213–13224.spa
dcterms.referencesAjayan, K.V.; Selvaraju, M.; Unnikannan, P.; Sruthi, P. Phycoremediation of Tannery Wastewater Using Microalgae Scenedesmus Species. Int. J. Phytoremediat. 2015, 17, 907–916.spa
dcterms.referencesSánchez, S.; Martínez, M.E.; Espejo, M.T.; Pacheco, R.; Espinola, F.; Hodaifa, G. Mixotrophic Culture of Chlorella Pyrenoidosa with Olive-Mill Wastewater as the Nutrient Medium. J. Appl. Phycol. 2001, 13, 443–449.spa
dcterms.referencesDa Fontoura, J.T.; Rolim, G.S.; Mella, B.; Farenzena, M.; Gutterres, M. Defatted Microalgal Biomass as Biosorbent for the Removal of Acid Blue 161 Dye from Tannery Effluent. J. Environ. Chem. Eng. 2017, 5, 5076–5084.spa
dcterms.referencesArdila, L.; Godoy, R.; Montenegro, L. Sorption Capacity Measurement of Chlorella Vulgaris and Scenedesmus Acutus to Remove Chromium from Tannery Waste Water. IOP Conf. Ser. Earth Environ. Sci. 2017, 83, 012031.spa
dcterms.referencesPena, A.D.D.C.; Bertoldi, C.F.; da Fontoura, J.T.; Trierweiler, L.F.; Gutterres, M. Consortium of Microalgae for Tannery Effluent Treatment. Braz. Arch. Biol. Technol. 2019, 62, 1–10.spa
dcterms.referencesNagabalaji, V.; Sivasankari, G.; Srinivasan, S.V.; Suthanthararajan, R.; Ravindranath, E. Nutrient Removal from Synthetic and Secondary Treated Sewage and Tannery Wastewater through Phycoremediation. Environ. Technol. 2019, 40, 784–792.spa
dcterms.referencesZainith, S.; Saxena, G.; Kishor, R.; Bharagava, R.N. Application of Microalgae in Industrial Effluent Treatment, Contaminants Removal, and Biodiesel Production: Opportunities, Challenges, and Future Prospects. In Bioremediation for Environmental Sustainability: Toxicity, Mechanisms of Contaminants Degradation, Detoxification, and Challenges; Elsevier: Amsterdam, The Netherlands, 2020; pp. 481–517.spa
dcterms.referencesPena, A.C.C.; Agustini, C.B.; Trierweiler, L.F.; Gutterres, M. Influence of Period Light on Cultivation of Microalgae Consortium for the Treatment of Tannery Wastewaters from Leather Finishing Stage. J. Clean. Prod. 2020, 263, 121618.spa
dcterms.referencesBaird, R.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017.spa
dcterms.referencesKurniawati, P.; Gusrianti, R.; Dwisiwi, B.B.; Purbaningtias, T.E.; Wiyantoko, B. Verification of Spectrophotometric Method for Nitrate Analysis in Water Samples. AIP Conf. Proc. 2017, 1911, 020012.spa
dcterms.referencesMoheimani, N.R.; Webb, J.P.; Borowitzka, M.A. Bioremediation and Other Potential Applications of Coccolithophorid Algae: A Review. Algal Res. 2012, 1, 120–133.spa
dcterms.referencesSlocombe, S.P.; Ross, M.; Thomas, N.; McNeill, S.; Stanley, M.S. A Rapid and General Method for Measurement of Protein in Micro-Algal Biomass. Bioresour. Technol. 2013, 129, 51–57.spa
dcterms.referencesFrings, C.S.; Dunn, R.T. A Colorimetric Method for Determination of Total Serum Lipids Based on the Sulfo-Phospho-Vanillin Reaction. Am. J. Clin. Pathol. 1970, 53, 89–91.spa
dcterms.referencesPˇribyl, P.; Cepák, V.; Kaštánek, P.; Zachleder, V. Elevated Production of Carotenoids by a New Isolate of Scenedesmus Sp. Algal Res. 2015, 11, 22–27.spa
dcterms.referencesBennett, A.; Bogobad, L. Complementary Chromatic Adaptation in a Filamentous Blue-Green Alga. J. Cell Biol. 1973, 58, 419–435.spa
dcterms.referencesBerkes, F. Evolution of Co-Management: Role of Knowledge Generation, Bridging Organizations and Social Learning. J. Environ. Manag. 2009, 90, 1692–1702.spa
dcterms.referencesGenawi, N.M.; Ibrahim, M.H.; El-Naas, M.H.; Alshaik, A.E. Chromium Removal from Tannery Wastewater by Electrocoagulation: Optimization and Sludge Characterization. Water 2020, 12, 1374.spa
dcterms.referencesDas, C.; Naseera, K.; Ram, A.; Meena, R.M.; Ramaiah, N. Bioremediation of Tannery Wastewater by a Salt-Tolerant Strain of Chlorella Vulgaris. J. Appl. Phycol. 2017, 29, 235–243.spa
dcterms.referencesGoswami, S.; Mazumder, D. Treatment of Chrome Tannery Wastewater by Biological Process—A Mini Review. World Acad. Sci. Eng. Technol. Int. J. Environ. Ecol. Eng. 2013, 7, 798–804.spa
dcterms.referencesMeenachi, S.; Kandasamy, S. Investigation of Tannery Liming Waste Water Using Green Synthesised Iron Oxide Nano Particles. Int. J. Environ. Anal. Chem. 2019, 99, 1286–1297.spa
dcterms.referencesUllah, R.; Ahmad, W.; Ahmad, I.; Khan, M.; Khattak, M.I.; Hussain, F. Adsorption and Recovery of Hexavalent Chromium from Tannery Wastewater over Magnetic Max Phase Composite. Sep. Sci. Technol. 2021, 56, 439–452.spa
dcterms.referencesLe Luu, T. Tannery Wastewater Treatment after Activated Sludge Pre-Treatment Using Electro-Oxidation on Inactive Anodes. Clean Technol. Environ. Policy 2020, 22, 1701–1713.spa
dcterms.referencesPal, M.; Malhotra, M.; Mandal, M.K.; Paine, T.K.; Pal, P. Recycling of Wastewater from Tannery Industry through MembraneIntegrated Hybrid Treatment Using a Novel Graphene Oxide Nanocomposite. J. Water Process Eng. 2020, 36, 101324.spa
dcterms.referencesZhou, L.; Zhang, W.; De Costa, Y.G.; Zhuang, W.Q.; Yi, S. Assessing Inorganic Components of Cake Layer in A/O Membrane Bioreactor for Physical-Chemical Treated Tannery Effluent. Chemosphere 2020, 250, 126220.spa
dcterms.referencesSaeed, T.; Afrin, R.; Muyeed, A.A.; Sun, G. Treatment of Tannery Wastewater in a Pilot-Scale Hybrid Constructed Wetland System in Bangladesh. Chemosphere 2012, 88, 1065–1073.spa
dcterms.referencesHuang, W.; Shao, H.; Zhou, S.; Zhou, Q.; Li, W.; Xing, W. Modulation of Cadmium-Induced Phytotoxicity in Cabomba Caroliniana by Urea Involves Photosynthetic Metabolism and Antioxidant Status. Ecotoxicol. Environ. Saf. 2017, 144, 88–96.spa
dcterms.referencesSelvan, S.T.; Velramar, B.; Ramamurthy, D.; Balasundaram, S.; Sivamani, K. Pilot Scale Wastewater Treatment, CO2 Sequestration and Lipid Production Using Microalga, Neochloris Aquatica RDS02. Int. J. Phytoremediat. 2020, 22, 1462–1479.spa
dcterms.referencesBellén, M.; Hernández, L.; Parra, D.; Vega, A.; Pérez, K. Using Scenedesmus Sp. for the Phycoremediation of Tannery Wastewater. Tecciencia 2016, 12, 69–75.spa
dcterms.referencesKozik, V.; Barbusinski, K.; Thomas, M.; Sroda, A.; Jampilek, J.; Sochanik, A.; Smolinski, A.; Bak, A. Taguchi Method and Response Surface Methodology in the Treatment of Highly Contaminated Tannery Wastewater Using Commercial Potassium Ferrate. Materials 2019, 12, 3784.spa
dcterms.referencesAlemu, T.; Mekonnen, A.; Leta, S. Integrated Tannery Wastewater Treatment for Effluent Reuse for Irrigation: Encouraging Water Efficiency and Sustainable Development in Developing Countries. J. Water Process Eng. 2019, 30, 100514.spa
dcterms.referencesYadav, A.; Raj, A.; Purchase, D.; Ferreira, L.F.R.; Saratale, G.D.; Bharagava, R.N. Phytotoxicity, Cytotoxicity and Genotoxicity Evaluation of Organic and Inorganic Pollutants Rich Tannery Wastewater from a Common Effluent Treatment Plant (CETP) in Unnao District, India Using Vigna Radiata and Allium Cepa. Chemosphere 2019, 224, 324–332.spa
dcterms.referencesBharagava, R.N.; Saxena, G.; Mulla, S.I.; Patel, D.K. Characterization and Identification of Recalcitrant Organic Pollutants (ROPs) in Tannery Wastewater and Its Phytotoxicity Evaluation for Environmental Safety. Arch. Environ. Contam. Toxicol. 2018, 75, 259–272.spa
dcterms.referencesDunn, K.; Maart, B.; Rose, P. Arthrospira (Spirulina) in Tannery Wastewaters. Part 2: Evaluation of Tannery Wastewater as Production Media for the Mass Culture of Arthrospira Biomass. Water SA 2013, 39, 279–284.spa
dcterms.referencesSaranya, D.; Shanthakumar, S. Effect of Culture Conditions on Biomass Yield of Acclimatized Microalgae in Ozone Pre-Treated Tannery Effluent: A Simultaneous Exploration of Bioremediation and Lipid Accumulation Potential. J. Environ. Manag. 2020, 273, 111129.spa
dcterms.referencesReyes-Serrano, A.; López-Alejo, J.E.; Hernández-Cortázar, M.A.; Elizalde, I. Removing Contaminants from Tannery Wastewater by Chemical Precipitation Using CaO and Ca(OH)2 . Chin. J. Chem. Eng. 2020, 28, 1107–1111.spa
dcterms.referencesGonzález-Fernández, C.; Ballesteros, M. Linking Microalgae and Cyanobacteria Culture Conditions and Key-Enzymes for Carbohydrate Accumulation. Biotechnol. Adv. 2012, 30, 1655–1661.spa
dcterms.referencesSutherland, D.L.; Ralph, P.J. Microalgal Bioremediation of Emerging Contaminants—Opportunities and Challenges. Water Res. 2019, 164, 114921.spa
dcterms.referencesChoi, S.; Song, C.W.; Shin, J.H.; Lee, S.Y. Biorefineries for the Production of Top Building Block Chemicals and Their Derivatives. Metab. Eng. 2015, 28, 223–239.spa
dcterms.referencesSalama, E.S.; Kurade, M.B.; Abou-Shanab, R.A.I.; El-Dalatony, M.M.; Yang, I.S.; Min, B.; Jeon, B.H. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew. Sustain. Energy Rev. 2017, 79, 1189–1211.spa
dcterms.referencesSforza, E.; Kumkum, P.; Barbera, E.; Kumar, S. Bioremediation of industrial effluents: How a biochar pretreatment may increase the microalgal growth in tannery wastewater. J. Water Process Eng. 2020, 37, 101431.spa
dcterms.referencesCho, H.D.; Kim, E.Y.; Hung, Y.-T. Heavy metal removal by microbial bio sorbents. In Handbook of Environmental Engineering: Environmental Bioingenieering; Humana Press: Totowa, NJ, USA, 2010; pp. 375–402.spa
dcterms.referencesGendy, T.S.; El-Temtamy, S.A. Commercialization potential aspects of microalgae for biofuel production: An overview. Egypt. J. Pet. 2013, 22, 43–51.spa
dc.contributor.corporatenameWaterspa
dc.identifier.doihttps:// doi.org/10.3390/w14030346
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol. 14 No° 3 [2022]spa
dc.relation.citationendpage14spa
dc.relation.citationissue3[2022]spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume14spa
dc.relation.citesUrbina-Suarez, N.A.; Ayala-González, D.D.; Rivera-Amaya, J.D.; Barajas-Solano, A.F.; Machuca-Martínez, F. Evaluation of the Light/Dark Cycle and Concentration of Tannery Wastewater in the Production of Biomass and Metabolites of Industrial Interest from Microalgae and Cyanobacteria. Water 2022, 14, 346. https:// doi.org/10.3390/w14030346
dc.relation.ispartofjournalWaterspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalmicroalgaeeng
dc.subject.proposaltannery effluentseng
dc.subject.proposalcarbohydrateseng
dc.subject.proposallipidseng
dc.subject.proposalproteinseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2022 by the authors
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 by the authors