dc.contributor.author | Alvarado, K | |
dc.contributor.author | Niño, L. Elisa | |
dc.contributor.author | Gelves Gelves, Elizabeth | |
dc.date.accessioned | 2022-11-21T20:21:09Z | |
dc.date.available | 2022-11-21T20:21:09Z | |
dc.date.issued | 2021-09-10 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6568 | |
dc.description.abstract | Fossil fuels have become a great energy source worldwide. However, its prolonged
use has caused severe environmental pollution problems. Biofuels generated from biomass as a
product of microbial biotechnology emerge as an alternative to the use of compounds derived
from oil. Therefore, their production results in complex experiments and source investment.
That is why engineering studies implementation using mathematical models and simulation
techniques should be specified in bioprocesses. The latter focused on optimizing the process
parameters, maximizing productivity, generating greater profitability, and reducing cost. This
research aimed at the computer-assisted evaluation of obtaining bioethanol from
Saccharomyces cerevisiae to determine the most critical factors in the production process using
a continuous mode. It was determined that the feed rate significantly influences the bioethanol
volumetric productivity. | eng |
dc.format.extent | 11 Páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.relation.ispartof | Journal of Physics: Conference Series. Vol. 2049 No.012086 (2021) | |
dc.rights | Published under licence by IOP Publishing Ltd | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.title | Computer-Aided Evaluation of Ethanol Production from a Continuous Operating Mode using Simulink | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Fernandez C, Pantano N, Serrano E and Scaglia G 2020 Multivariable Tracking Control of a Bioethanol Process under Uncertainties Mathematical Problems in Engineering 2020 1 | spa |
dcterms.references | Jambo S, Abdulla R, Marbawi H and Gansau J 2019 Response surface optimization of bioethanol production from third generation feedstock - Eucheuma cottonii Renewable Energy 132 1 | spa |
dcterms.references | Shokrkar H, Abbasabadi M and Ebrahimi S 2018 Model-based evaluation of continuous bioethanol production plant Biofuels, Bioproducts and Biorefining 13 11 | spa |
dcterms.references | Yi F, Lawell C, Thome K 2018 A Dynamic Model of Subsidies: Theory and Application to the Ethanol Industry | spa |
dcterms.references | Khandaker M, Qiamuddin K, Majrashi A, Dalorima T, Sajili M and Hossain A 2018 BioEthanol Production from Fruit and Vegetable Waste by Using Saccharomyces Cerevisiae. Bioscience Research 15(3) 1703 | spa |
dcterms.references | Cutzu R and Bardi L 2017 Production of Bioethanol from Agricultural Wastes Using Residual Thermal Energy of a Cogeneration Plant in the Distillation Phase Fermentation 3(2) 24 | spa |
dcterms.references | Chouaibi M, Daoued K, Riguane K, Rouissi T and Ferrari G 2020 Production of bioethanol from pumpkin peel wastes: Comparison between response surface methodology (RSM) and artificial neural networks (ANN) Industrial Crops and Products 155 1 | spa |
dcterms.references | Ortega F, Pérez O and López E 2016 Phenomenological-Based Semiphysical Model of Continuous Alcoholic Fermentation Process Información tecnológica 27(271) 21 | spa |
dcterms.references | Araque J, Niño L and Gelves G 2020 Industrial Scale Bioprocess Simulation for Ganoderma Lucidum Production using Superpro Designer Journal of Physics: Conference Series 1655 1 | spa |
dcterms.references | Ciesielski A and Grzywacz R 2019 Non-linear analysis of cybernetic model for aerobic growth of Saccharomyces cerevisiae in a continuous stirred tank bioreactor. Static bifurcations Biochemical Engineering Journal 146 88 | spa |
dcterms.references | Rombouts J, Mos G, Weissbrodt D, Kleerebezem R and Van Loosdrecht M 2019 Diversity and metabolism of xylose and glucose fermenting microbial communities in sequencing batch or continuous culturing FEMS Microbiology Ecology 95(2) 1 | spa |
dcterms.references | Alvarado K, Bayona J, Consuegra J, Parada D, Sepúlveda N and Gelves G 2020 Use of Operational Training Simulation in the Study of Ethanol Operating Conditions: A Powerful Tool for Education and Research Performance Improvement Journal of Physics: Conference Series 1655 1 | spa |
dcterms.references | Kihara T, Noguchi T, Tashiro Y, Sakai K and Sonomoto K 2019 Highly efficient continuous acetone–butanol–ethanol production from mixed sugars without carbon catabolite repression Bioresource Technology Reports 7 1 | spa |
dcterms.references | Caspeta L, Coronel J, Montes de Oca A, Abarca E, González L and Martínez A 2019 Engineering high‐ gravity fermentations for ethanol production at elevated temperature with Saccharomyces cerevisiae Biotechnology and Bioengineering, 116(10) 2587 | spa |
dcterms.references | Han W, Xu X, Gao Y, He H, Chen L, Lian X and Hou P 2019 Utilization of waste cake for fermentative ethanol production Science of the Total Environment 673 383 | spa |
dcterms.references | Triwahyuni E, Sudiyani Y and Abimanyu H 2015 The effect of substrate loading on simultaneous saccharification and fermentation process for bioethanol production from oil palm empty fruit bunches Energy Procedia 68 138 | spa |
dcterms.references | Betiku E and Taiwo A 2015 Modeling and optimization of bioethanol production from breadfruit starch hydrolyzate vis-à-vis response surface methodology and artificial neural network Renewable Energy 74 87 | spa |
dcterms.references | Bi C, Zeng J, Zhang W and Wen Y 2020 Modelling the Coevolution of the Fuel Ethanol Industry, Technology System, and Market System in China: A History-Friendly Model Energies 13(5) 1 | spa |
dcterms.references | Niño L, Acosta A and Gelves G 2013 Evaluación de pretratamientos químicos para la hidrólisis enzimàtica de residuos lignocelulósicos de yuca (Manihot esculenta Crantz). Revista Facultad de Ingeniería Universidad de Antioquia 69 317 | spa |
dcterms.references | López L, Peñuela, M and Gelves G 2016 Improving of gas-liquid mass transfer in a stirred tank bioreactor: A CFD approach. International Journal of Applied Engineering. Research 11(9) 6097 | spa |
dcterms.references | Niño L and Gelves G 2015 Simulating gas-liquid mass transfer in a spin filter bioreactor. Revista Facultad de Ingeniería 1 163 | spa |
dc.contributor.corporatename | Journal of Physics: Conference Series | spa |
dc.identifier.doi | 10.1088/1742-6596/2049/1/012086 | |
dc.publisher.place | Reino Unido | spa |
dc.relation.citationedition | Vol. 2049 N0.012086 (2021) | spa |
dc.relation.citationendpage | 10 | spa |
dc.relation.citationissue | 012086 (2021) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | Vol.2049 | spa |
dc.relation.cites | K Alvarado et al 2021 J. Phys.: Conf. Ser. 2049 012086 | |
dc.relation.ispartofjournal | Journal of Physics: Conference Series | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |