Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía Martínez, Janet B.
dc.contributor.authorSanchez Tobos, Leidy P.
dc.contributor.authorCarvajal Albarracin, Nicolaz A
dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorBarajas Ferreira, Crisostomo
dc.contributor.authorKafarov, Viatcheslav
dc.contributor.authorZUORRO, Antonio
dc.date.accessioned2022-11-21T20:16:35Z
dc.date.available2022-11-21T20:16:35Z
dc.date.issued2022-02-26
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6567
dc.description.abstractIn this work, the capacity of wastewater from an inland fishery system in Colombia (Norte de Santander) was tested as culture medium for Chlorella sp. and Scenedesmus sp. Due to insufficient N and P concentrations for successful algae growth, the effect of wastewater replenishment with NO3 , PO4 , and Na2CO3 or NaHCO3 as a carbon source was analyzed using a three-factor nonfactorial response surface design. The results showed that the addition of NaNO3 (0.125 g/L), K2HPO4 (0.075 g/L), KH2PO4 (0.75 g/L), and NaHCO3 (0.5 and 2 g/L for Chlorella sp. and Scenedesmus sp. respectively) significantly increased the biomass of Chlorella sp. (0.87 g/L) and Scenedesmus sp. (0.83 g/L). Although these results show that the addition of other nutrients is not necessary (Na, Mg, SO4 , Ca, etc.), it is still essential to determine the quality of the biomass produced in terms of its application as a feed supplement for fish production.eng
dc.format.extent16spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherWaterspa
dc.relation.ispartofWater. Vol 14 No°5[2022]
dc.rights© 2022 by the authorseng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.scopus.com/record/display.uri?eid=2-s2.0-85125646621&doi=10.3390%2fw14050749&origin=inward&txGid=d6c3f883b591caa1abcaff8e7abfc7f6spa
dc.titleThe Circular Economy Approach to Improving CNP Ratio in Inland Fishery Wastewater for Increasing Algal Biomass Productioneng
dc.typeArtículo de revistaspa
dcterms.referencesFAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action; FAO: Rome, Italy, 2020; pp. 5–10.spa
dcterms.referencesCrona, B.I.; Basurto, X.; Squires, D.; Gelcich, S.; Daw, T.M.; Khan, A.; Havice, E.; Chomo, V.; Troell, M.; Buchary, E.A.; et al. Towards a Typology of Interactions between Small-Scale Fisheries and Global Seafood Trade. Mar. Policy 2016, 65, 1–10.spa
dcterms.referencesTejido-Nuñez, Y.; Aymerich, E.; Sancho, L.; Refardt, D. Treatment of Aquaculture Effluent with Chlorella Vulgaris and Tetradesmus Obliquus: The Effect of Pretreatment on Microalgae Growth and Nutrient Removal Efficiency. Ecol. Eng. 2019, 136, 1–9.spa
dcterms.referencesLynch, A.J.; Cowx, I.G.; Fluet-Chouinard, E.; Glaser, S.M.; Phang, S.C.; Beard, T.D.; Bower, S.D.; Brooks, J.L.; Bunnell, D.B.; Claussen, J.E.; et al. Inland Fisheries–Invisible but Integral to the UN Sustainable Development Agenda for Ending Poverty by 2030. Glob. Environ. Chang. 2017, 47, 167–173.spa
dcterms.referencesVan Den Hende, S.; Beelen, V.; Bore, G.; Boon, N.; Vervaeren, H. Up-Scaling Aquaculture Wastewater Treatment by Microalgal Bacterial Flocs: From Lab Reactors to an Outdoor Raceway Pond. Bioresour. Technol. 2014, 159, 342–354.spa
dcterms.referencesMook, W.T.; Chakrabarti, M.H.; Aroua, M.K.; Khan, G.M.A.; Ali, B.S.; Islam, M.S.; Abu Hassan, M.A. Removal of Total Ammonia Nitrogen (TAN), Nitrate and Total Organic Carbon (TOC) from Aquaculture Wastewater Using Electrochemical Technology: A Review. Desalination 2012, 285, 1–13.spa
dcterms.referencesChen, S.; Yu, J.; Wang, H.; Yu, H.; Quan, X. A Pilot-Scale Coupling Catalytic Ozonation–Membrane Filtration System for Recirculating Aquaculture Wastewater Treatment. Desalination 2015, 363, 37–43.spa
dcterms.referencesCrab, R.; Avnimelech, Y.; Defoirdt, T.; Bossier, P.; Verstraete, W. Nitrogen Removal Techniques in Aquaculture for a Sustainable Production. Aquaculture 2007, 270, 1–14.spa
dcterms.referencesLananan, F.; Abdul Hamid, S.H.; Din, W.N.S.; Ali, N.; Khatoon, H.; Jusoh, A.; Endut, A. Symbiotic Bioremediation of Aquaculture Wastewater in Reducing Ammonia and Phosphorus Utilizing Effective Microorganism (EM-1) and Microalgae (Chlorella Sp.). Int. Biodeterior. Biodegrad. 2014, 95, 127–134.spa
dcterms.referencesDourou, M.; Tsolcha, O.N.; Tekerlekopoulou, A.G.; Bokas, D.; Aggelis, G. Fish Farm Effluents Are Suitable Growth Media for Nannochloropsis Gaditana, a Polyunsaturated Fatty Acid Producing Microalga. Eng. Life Sci. 2018, 18, 851–860.spa
dcterms.referencesNasir, N.M.; Bakar, N.S.A.; Lananan, F.; Abdul Hamid, S.H.; Lam, S.S.; Jusoh, A. Treatment of African Catfish, Clarias Gariepinus Wastewater Utilizing Phytoremediation of Microalgae, Chlorella Sp. with Aspergillus Niger Bio-Harvesting. Bioresour. Technol. 2015, 190, 492–498.spa
dcterms.referencesFernández-Arévalo, T.; Lizarralde, I.; Fdz-Polanco, F.; Pérez-Elvira, S.I.; Garrido, J.M.; Puig, S.; Poch, M.; Grau, P.; Ayesa, E. Quantitative Assessment of Energy and Resource Recovery in Wastewater Treatment Plants Based on Plant-Wide Simulations. Water Res. 2017, 118, 272–288.spa
dcterms.referencesSpiliotopoulou, A.; Rojas-Tirado, P.; Chhetri, R.K.; Kaarsholm, K.M.S.; Martin, R.; Pedersen, P.B.; Pedersen, L.-F.; Andersen, H.R. Ozonation Control and Effects of Ozone on Water Quality in Recirculating Aquaculture Systems. Water Res. 2018, 133, 289–298.spa
dcterms.referencesQuintero-Dallos, V.; García-Martínez, J.B.; Contreras-Ropero, J.E.; Barajas-Solano, A.F.; Barajas-Ferrerira, C.; Lavecchia, R.; Zuorro, A. Vinasse as a Sustainable Medium for the Production of Chlorella Vulgaris UTEX 1803. Water 2019, 11, 1526.spa
dcterms.referencesVillar-Navarro, E.; Garrido-Pérez, C.; Perales, J.A. Recycling “Waste” Nutrients Back into RAS and FTS Marine Aquaculture Facilities from the Perspective of the Circular Economy. Sci. Total Environ. 2021, 762, 143057.spa
dcterms.referencesAndreotti, V.; Solimeno, A.; Rossi, S.; Ficara, E.; Marazzi, F.; Mezzanotte, V.; García, J. Bioremediation of Aquaculture Wastewater with the Microalgae Tetraselmis Suecica: Semi-Continuous Experiments, Simulation, and Photo-Respirometric Tests. Sci. Total Environ. 2020, 738, 139859.spa
dcterms.referencesEbeling, J.M.; Sibrell, P.L.; Ogden, S.R.; Summerfelt, S.T. Evaluation of Chemical Coagulation–Flocculation Aids for the Removal of Suspended Solids and Phosphorus from Intensive Recirculating Aquaculture Effluent Discharge. Aquac. Eng. 2003, 29, 23–42.spa
dcterms.referencesGao, F.; Li, C.; Yang, Z.-H.; Zeng, G.-M.; Feng, L.-J.; Liu, J.; Liu, M.; Cai, H. Continuous Microalgae Cultivation in Aquaculture Wastewater by a Membrane Photobioreactor for Biomass Production and Nutrients Removal. Ecol. Eng. 2016, 92, 55–61.spa
dcterms.referencesHawrot-Paw, M.; Koniuszy, A.; Gałczynska, M.; Zajac, G.; Szyszlak-Bargłowicz, J. Production of Microalgal Biomass Using Aquaculture Wastewater as Growth Medium. Water 2020, 12, 106.spa
dcterms.referencesZuorro, A.; García-Martínez, J.B.; Barajas-Solano, A.F. The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review. Catalysts 2021, 11, 22.spa
dcterms.referencesMorando-Grijalva, C.A.; Vázquez-Larios, A.L.; Alcántara-Hernández, R.J.; Ortega-Clemente, L.A.; Robledo-Narváez, P.N. Isolation of a Freshwater Microalgae and Its Application for the Treatment of Wastewater and Obtaining Fatty Acids from Tilapia Cultivation. Environ. Sci. Pollut. Res. 2020, 27, 28575–28584.spa
dcterms.referencesGuldhe, A.; Ansari, F.A.; Singh, P.; Bux, F. Heterotrophic Cultivation of Microalgae Using Aquaculture Wastewater: A Biorefinery Concept for Biomass Production and Nutrient Remediation. Ecol. Eng. 2017, 99, 47–53.spa
dcterms.referencesMalibari, R.; Sayegh, F.; Elazzazy, A.M.; Baeshen, M.N.; Dourou, M.; Aggelis, G. Reuse of Shrimp Farm Wastewater as Growth Medium for Marine Microalgae Isolated from Red Sea–Jeddah. J. Clean. Prod. 2018, 198, 160–169.spa
dcterms.referencesHalfhide, T.; Åkerstrøm, A.; Lekang, O.I.; Gislerød, H.R.; Ergas, S.J. Production of Algal Biomass, Chlorophyll, Starch and Lipids Using Aquaculture Wastewater under Axenic and Non-Axenic Conditions. Algal Res. 2014, 6, 152–159.spa
dcterms.referencesLugo, L.A.; Thorarinsdottir, R.I.; Bjornsson, S.; Palsson, O.P.; Skulason, H.; Johannsson, S.; Brynjolfsson, S. Remediation of Aquaculture Wastewater Using the Microalga Chlorella Sorokiniana. Water 2020, 12, 3144.spa
dcterms.referencesAttasat, S.; Wanichpongpan, P.; Ruenglertpanyakul, W. Cultivation of Microalgae (Oscillatoria Okeni and Chlorella Vulgaris) Using Tilapia-Pond Effluent and a Comparison of Their Biomass Removal Efficiency. Water Sci. Technol. 2013, 67, 271–277.spa
dcterms.referencesMtaki, K.; Kyewalyanga, M.S.; Mtolera, M.S.P. Supplementing Wastewater with NPK Fertilizer as a Cheap Source of Nutrients in Cultivating Live Food (Chlorella Vulgaris). Ann. Microbiol. 2021, 71, 7.spa
dcterms.referencesHesni, M.A.; Hedayati, A.; Qadermarzi, A.; Pouladi, M.; Zangiabadi, S.; Naqshbandi, N. Using Chlorella Vulgaris and Iron Oxide Nanoparticles in a Designed Bioreactor for Aquaculture Effluents Purification. Aquac. Eng. 2020, 90, 102069.spa
dcterms.referencesGe, H.; Li, J.; Chang, Z.; Chen, P.; Shen, M.; Zhao, F. Effect of Microalgae with Semicontinuous Harvesting on Water Quality and Zootechnical Performance of White Shrimp Reared in the Zero Water Exchange System. Aquac. Eng. 2016, 72–73, 70–76.spa
dcterms.referencesPeng, Y.-Y.; Gao, F.; Yang, H.-L.; Wu, H.-W.-J.; Li, C.; Lu, M.-M.; Yang, Z.-Y. Simultaneous Removal of Nutrient and Sulfonamides from Marine Aquaculture Wastewater by Concentrated and Attached Cultivation of Chlorella Vulgaris in an Algal Biofilm Membrane Photobioreactor (BF-MPBR). Sci. Total Environ. 2020, 725, 138524.spa
dcterms.referencesBarnharst, T.; Rajendran, A.; Hu, B. Bioremediation of Synthetic Intensive Aquaculture Wastewater by a Novel Feed-Grade Composite Biofilm. Int. Biodeterior. Biodegrad. 2018, 126, 131–142.spa
dcterms.referencesDaneshvar, E.; Antikainen, L.; Koutra, E.; Kornaros, M.; Bhatnagar, A. Investigation on the Feasibility of Chlorella Vulgaris Cultivation in a Mixture of Pulp and Aquaculture Effluents: Treatment of Wastewater and Lipid Extraction. Bioresour. Technol. 2018, 255, 104–110.spa
dcterms.referencesAndreotti, V.; Chindris, A.; Brundu, G.; Vallainc, D.; Francavilla, M.; García, J. Bioremediation of Aquaculture Wastewater from Mugil Cephalus (Linnaeus, 1758) with Different Microalgae Species. Chem. Ecol. 2017, 33, 750–761.spa
dcterms.referencesAndreotti, V.; Solimeno, A.; Chindris, A.; Marazzi, F.; García, J. Growth of Tetraselmis Suecica and Dunaliella Tertiolecta in Aquaculture Wastewater: Numerical Simulation with the BIO_ALGAE Model. Water Air Soil Pollut. 2019, 230, 60.spa
dcterms.referencesLiu, Y.; Lv, J.; Feng, J.; Liu, Q.; Nan, F.; Xie, S. Treatment of Real Aquaculture Wastewater from a Fishery Utilizing Phytoremediation with Microalgae. J. Chem. Technol. Biotechnol. 2019, 94, 900–910.spa
dcterms.referencesDing, Y.; Guo, Z.; Mei, J.; Liang, Z.; Li, Z.; Hou, X. Investigation into the Novel Microalgae Membrane Bioreactor with Internal Circulating Fluidized Bed for Marine Aquaculture Wastewater Treatment. Membranes 2020, 10, 353.spa
dcterms.referencesCardoso, L.G.; Duarte, J.H.; Costa, J.A.V.; de Jesus Assis, D.; Lemos, P.V.F.; Druzian, J.I.; de Souza, C.O.; Nunes, I.L.; Chinalia, F.A. Spirulina Sp. as a Bioremediation Agent for Aquaculture Wastewater: Production of High Added Value Compounds and Estimation of Theoretical Biodiesel. BioEnergy Res. 2020, 14, 254–264.spa
dcterms.referencesLi, X.; Marella, T.K.; Tao, L.; Peng, L.; Song, C.; Dai, L.; Tiwari, A.; Li, G. A Novel Growth Method for Diatom Algae in Aquaculture Waste Water for Natural Food Development and Nutrient Removal. Water Sci. Technol. 2017, 75, 2777–2783.spa
dcterms.referencesMichels, M.H.A.; Vaskoska, M.; Vermuë, M.H.; Wijffels, R.H. Growth of Tetraselmis Suecica in a Tubular Photobioreactor on Wastewater from a Fish Farm. Water Res. 2014, 65, 290–296.spa
dcterms.referencesHan, W.; Mao, Y.; Wei, Y.; Shang, P.; Zhou, X. Bioremediation of Aquaculture Wastewater with Algal-Bacterial Biofilm Combined with the Production of Selenium Rich Biofertilizer. Water 2020, 12, 2071.spa
dcterms.referencesWicker, R.; Bhatnagar, A. Application of Nordic Microalgal-Bacterial Consortia for Nutrient Removal from Wastewater. Chem. Eng. J. 2020, 398, 125567.spa
dcterms.referencesSfez, S.; Van Den Hende, S.; Taelman, S.E.; De Meester, S.; Dewulf, J. Environmental Sustainability Assessment of a Microalgae Raceway Pond Treating Aquaculture Wastewater: From up-Scaling to System Integration. Bioresour. Technol. 2015, 190, 321–331.spa
dcterms.referencesGuiza-Franco, L.; Orozco-Rojas, L.G.; Sánchez-Galvis, E.M.; García-Martínez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F. Production of Chlorella Vulgaris Biomass on Uv-Treated Wastewater as an Alternative for Environmental Sustainability on High-Mountain Fisheries. Chem. Eng. Trans. 2018, 64, 517–522.spa
dcterms.referencesGarcia-Martinez, J.B.; Urbina-Suarez, N.A.; Zuorro, A.; Barajas-Solano, A.F.; Kafarov, V. Fisheries Wastewater as a Sustainable Media for the Production of Algae-Based Products. Chem. Eng. Trans. 2019, 76, 1339–1344.spa
dcterms.referencesMilhazes-Cunha, H.; Otero, A. Valorisation of Aquaculture Effluents with Microalgae: The Integrated Multi-Trophic Aquaculture Concept. Algal Res. 2017, 24, 416–424.spa
dcterms.referencesAnsari, F.A.; Singh, P.; Guldhe, A.; Bux, F. Microalgal Cultivation Using Aquaculture Wastewater: Integrated Biomass Generation and Nutrient Remediation. Algal Res. 2017, 21, 169–177.spa
dcterms.referencesBaird, R.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017.spa
dcterms.referencesAndersen, R.A.; Berges, J.A.; Harrison, P.J.; Watanabe, M.M. Appendix A—Recipes for Freshwater and Seawater Media. In Algal Culturing Techniques; Andersen, R.A., Ed.; Elsevier Academic Press: Burlington, MA, USA, 2005; pp. 429–538.spa
dcterms.referencesSanchez-Galvis, E.M.; Cardenas-Gutierrez, I.Y.; Contreras-Ropero, J.E.; García-Martínez, J.B.; Barajas-Solano, A.F.; Zuorro, A. An Innovative Low-Cost Equipment for Electro-Concentration of Microalgal Biomass. Appl. Sci. 2020, 10, 4841.spa
dcterms.referencesCastellaños-Estupiñan, M.A.; Sánchez-Galvis, E.M.; García-Martínez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F. Design of an Electroflotation System for the Concentration and Harvesting of Freshwater Microalgae. Chem. Eng. Trans. 2018, 64, 1–6.spa
dcterms.referencesGarcia-Martinez, B.; Ayala-Torres, E.; Reyes-Gomez, O.; Zuorro, A.; Barajas-Solano, A.; Barajas-Ferreira, C. Evaluation of a Two-Phase Extraction System of Carbohydrates and Proteins from Chlorella Vulgaris Utex 1803. Chem. Eng. Trans. 2016, 49, 355–360.spa
dcterms.referencesBarajas-Solano, A.F.; Gonzalez-Delgado, A.D.; Kafarov, V. Effect Of Thermal Pre-Treatment On Fermentable Sugar Production Of Chlorella Vulgaris. Chem. Eng. Trans. 2014, 37, 655–660.spa
dcterms.referencesMota, M.F.S.; Souza, M.F.; Bon, E.P.S.; Rodrigues, M.A.; Freitas, S.P. Colorimetric Protein Determination in Microalgae (Chlorophyta): Association of Milling and SDS Treatment for Total Protein Extraction. J. Phycol. 2018, 54, 577–580.spa
dcterms.referencesMishra, S.K.; Suh, W.I.; Farooq, W.; Moon, M.; Shrivastav, A.; Park, M.S.; Yang, J.W. Rapid Quantification of Microalgal Lipids in Aqueous Medium by a Simple Colorimetric Method. Bioresour. Technol. 2014, 155, 330–333.spa
dcterms.referencesHynstova, V.; Sterbova, D.; Klejdus, B.; Hedbavny, J.; Huska, D.; Adam, V. Separation, Identification and Quantification of Carotenoids and Chlorophylls in Dietary Supplements Containing Chlorella Vulgaris and Spirulina Platensis Using High Performance Thin Layer Chromatography. J. Pharm. Biomed. Anal. 2018, 148, 108–118.spa
dcterms.referencesRasoul-Amini, S.; Montazeri-Najafabady, N.; Shaker, S.; Safari, A.; Kazemi, A.; Mousavi, P.; Mobasher, M.A.; Ghasemi, Y. Removal of Nitrogen and Phosphorus from Wastewater Using Microalgae Free Cells in Bath Culture System. Biocatal. Agric. Biotechnol. 2014, 3, 126–131.spa
dcterms.referencesJohn, E.M.; Sureshkumar, S.; Sankar, T.V.; Divya, K.R. Phycoremediation in Aquaculture; a Win-Win Paradigm. Environ. Technol. Rev. 2020, 9, 67–84.spa
dcterms.referencesZuorro, A.; Leal-Jerez, A.G.; Morales-Rivas, L.K.; Mogollón-Londoño, S.O.; Sanchez-Galvis, E.M.; García-Martínez, J.B.; BarajasSolano, A.F. Enhancement of Phycobiliprotein Accumulation in Thermotolerant Oscillatoria sp. through Media Optimization. ACS Omega 2021, 6, 10527–10536.spa
dcterms.referencesLu, W.; Liu, S.; Lin, Z.; Lin, M. Enhanced Microalgae Growth for Biodiesel Production and Nutrients Removal in Raw Swine Wastewater by Carbon Sources Supplementation. Waste Biomass Valorization 2021, 12, 1991–1999.spa
dcterms.referencesDo, C.V.T.; Nguyen, N.T.T.; Tran, T.D.; Pham, M.H.T.; Pham, T.Y.T. Capability of Carbon Fixation in Bicarbonate-Based and Carbon Dioxide-Based Systems by Scenedesmus Acuminatus TH04. Biochem. Eng. J. 2021, 166, 107858.spa
dcterms.referencesDuan, Y.; Guo, X.; Yang, J.; Zhang, M.; Li, Y. Nutrients Recycle and the Growth of Scenedesmus Obliquus in Synthetic Wastewater under Different Sodium Carbonate Concentrations. R. Soc. Open Sci. 2020, 7, 191214.spa
dcterms.referencesCuéllar-García, D.J.; Rangel-Basto, Y.A.; Urbina-Suarez, N.A.; Barajas-Solano, A.F.; Muñoz-Peñaloza, Y.A. Lipids Production from Scenedesmus Obliquus through Carbon/Nitrogen Ratio Optimization. J. Phys. Conf. Ser. 2019, 1388, 012043.spa
dcterms.referencesBarajas-Solano, A.F.; Guzmán-Monsalve, A.; Kafarov, V. Effect of Carbon-Nitrogen Ratio for the Biomass Production, Hydrocarbons and Lipids on Botryoccus Braunii UIS 003. Chem. Eng. Trans. 2016, 49, 247–252.spa
dcterms.referencesGarcía-Martínez, J.B.; Contreras-Ropero, J.E.; Urbina-Suarez, N.A.; López-Barrera, G.L.; Barajas-Solano, A.F.; Kafarov, V.; BarajasFerreira, C.; Ibarra-Mojica, D.M.; Zuorro, A. A Simulation Analysis of a Microalgal-Production Plant for the Transformation of Inland-Fisheries Wastewater in Sustainable Feed. Water 2022, 14, 250.spa
dcterms.referencesZuorro, A. Optimization of Polyphenol Recovery from Espresso Coffee Residues Using Factorial Design and Response Surface Methodology. Sep. Purif. Technol. 2015, 152, 64–69.Zuorro, A. Optimization of Polyphenol Recovery from Espresso Coffee Residues Using Factorial Design and Response Surface Methodology. Sep. Purif. Technol. 2015, 152, 64–69.spa
dc.contributor.corporatenameWaterspa
dc.identifier.doihttps://doi.org/ 10.3390/w14050749
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol. 14 No° 5 [2022]spa
dc.relation.citationendpage16spa
dc.relation.citationissue5[2022]spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume14spa
dc.relation.citesGarcía-Martínez, J.B.; Sanchez-Tobos, L.P.; CarvajalAlbarracín, N.A.; Barajas-Solano, A.F.; Barajas-Ferreira, C.; Kafarov, V.; Zuorro, A. The Circular Economy Approach to Improving CNP Ratio in Inland Fishery Wastewater for Increasing Algal Biomass Production. Water 2022, 14, 749. https://doi.org/ 10.3390/w14050749
dc.relation.ispartofjournalWaterspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalOreochromis speng
dc.subject.proposalproteineng
dc.subject.proposallipidseng
dc.subject.proposalcarbohydrateseng
dc.subject.proposalScenedesmuseng
dc.subject.proposalChlorellaeng
dc.subject.proposalinland fisherieseng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2022 by the authors
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 by the authors