Show simple item record

dc.contributor.authorOrtiz Betancur, Jeimy J.
dc.contributor.authorHerrera Ochoa, Marla S.
dc.contributor.authorGarcía Martínez, Janet B.
dc.contributor.authorUrbina-Suarez, Nestor Andres
dc.contributor.authorLópez Barrera, Germán L.
dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorBryan, Samantha
dc.contributor.authorZUORRO, Antonio
dc.date.accessioned2022-11-21T19:30:56Z
dc.date.available2022-11-21T19:30:56Z
dc.date.issued2022-02-26
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6564
dc.description.abstract: This paper explores the ability of Chlorella sp. and Scenedesmus sp. to convert landfill leachates into usable metabolites. Different concentrations (0.5, 1, 5, and 10% v/v) of leachate coupled with an inorganic carbon source (Na2CO3 , and NaHCO3 ) were tested to improve biomass production, metabolites synthesis, and removal of NO3 and PO4 . The result shows that both strains can effectively grow in media with up to 5% (v/v) leachate, while significantly reducing the concentrations of NO3 , and PO4 (80 and 50%, respectively). The addition of NaHCO3 as a carbon source improved the final concentration of biomass, lipids, carbohydrates, and the removal of NO3 and PO4 in both strains.eng
dc.format.extent12spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherApplied Sciencesspa
dc.relation.ispartofApplied Sciences. Vol 12 No°5[2022]
dc.rights© 2022 by the authorseng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.scopus.com/record/display.uri?eid=2-s2.0-85125811385&doi=10.3390%2fapp12052462&origin=inward&txGid=c0d5e922de23a17ca0c59cfba1ae903bspa
dc.titleApplication of Chlorella sp. and Scenedesmus sp. in the Bioconversion of Urban Leachates into Industrially Relevant Metaboliteseng
dc.typeArtículo de revistaspa
dcterms.referencesZhao, X.; Zhou, Y.; Huang, S.; Qiu, D.; Schideman, L.; Chai, X.; Zhao, Y. Characterization of Microalgae-Bacteria Consortium Cultured in Landfill Leachate for Carbon Fixation and Lipid Production. Bioresour. Technol. 2014, 156, 322–328.spa
dcterms.referencesPaskuliakova, A.; Tonry, S.; Touzet, N. Phycoremediation of Landfill Leachate with Chlorophytes: Phosphate a Limiting Factor on Ammonia Nitrogen Removal. Water Res. 2016, 99, 180–187.spa
dcterms.referencesLuo, H.; Zeng, Y.; Cheng, Y.; He, D.; Pan, X. Recent Advances in Municipal Landfill Leachate: A Review Focusing on Its Characteristics, Treatment, and Toxicity Assessment. Sci. Total Environ. 2020, 703, 135468.spa
dcterms.referencesNguyen, H.T.H.; Min, B. Leachate Treatment and Electricity Generation Using an Algae-Cathode Microbial Fuel Cell with Continuous Flow through the Chambers in Series. Sci. Total Environ. 2020, 723, 138054.spa
dcterms.referencesZuorro, A.; García-Martínez, J.B.; Barajas-Solano, A.F. The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review. Catalysts 2021, 11, 22.spa
dcterms.referencesMorais Junior, W.G.; Gorgich, M.; Corrêa, P.S.; Martins, A.A.; Mata, T.M.; Caetano, N.S. Microalgae for Biotechnological Applications: Cultivation, Harvesting and Biomass Processing. Aquaculture 2020, 528, 735562.spa
dcterms.referencesD ˛ebowski, M.; Zieli ´nski, M.; Kisielewska, M.; Kazimierowicz, J.; Dudek, M.; Swica, I.; Rudnicka, A. The Cultivation of Lipid-Rich ´ Microalgae Biomass as Anaerobic Digestate Valorization Technology—A Pilot-Scale Study. Processes 2020, 8, 517.spa
dcterms.referencesZuorro, A.; Maffei, G.; Lavecchia, R. Kinetic Modeling of Azo Dye Adsorption on Non-Living Cells of Nannochloropsis Oceanica. J. Environ. Chem. Eng. 2017, 5, 4121–4127.spa
dcterms.referencesMehariya, S.; Fratini, F.; Lavecchia, R.; Zuorro, A. Green Extraction of Value-Added Compounds Form Microalgae: A Short Review on Natural Deep Eutectic Solvents (NaDES) and Related Pre-Treatments. J. Environ. Chem. Eng. 2021, 9, 105989.spa
dcterms.referencesZuorro, A.; Leal-Jerez, A.G.; Morales-Rivas, L.K.; Mogollón-Londoño, S.O.; Sanchez-Galvis, E.M.; García-Martínez, J.B.; BarajasSolano, A.F. Enhancement of Phycobiliprotein Accumulation in Thermotolerant Oscillatoria sp. through Media Optimization. ACS Omega 2021, 6, 10527–10536.spa
dcterms.referencesRani, A.; Saini, K.C.; Bast, F.; Mehariya, S.; Bhatia, S.K.; Lavecchia, R.; Zuorro, A. Microorganisms: A Potential Source of Bioactive Molecules for Antioxidant Applications. Molecules 2021, 26, 1142.spa
dcterms.referencesShahid, A.; Malik, S.; Zhu, H.; Xu, J.; Nawaz, M.Z.; Nawaz, S.; Alam, M.A.; Mehmood, M.A. Cultivating Microalgae in Wastewater for Biomass Production, Pollutant Removal, and Atmospheric Carbon Mitigation: A Review. Sci. Total Environ. 2020, 704, 135303.spa
dcterms.referencesD ˛ebowski, M.; Kisielewska, M.; Kazimierowicz, J.; Rudnicka, A.; Dudek, M.; Romanowska-Duda, Z.; Zieli ´nski, M. The effects of Microalgae Biomass Co-Substrate on Biogas Production from the Common Agricultural Biogas Plants Feedstock. Energies 2020, 13, 2186.spa
dcterms.referencesGuldhe, A.; Kumari, S.; Ramanna, L.; Ramsundar, P.; Singh, P.; Rawat, I.; Bux, F. Prospects, Recent Advancements and Challenges of Different Wastewater Streams for Microalgal Cultivation. J. Environ. Manag. 2017, 203, 299–315.spa
dcterms.referencesCai, T.; Park, S.Y.; Li, Y. Nutrient Recovery from Wastewater Streams by Microalgae: Status and Prospects. Renew. Sustain. Energy Rev. 2013, 19, 360–369.spa
dcterms.referencesMohsenpour, S.F.; Hennige, S.; Willoughby, N.; Adeloye, A.; Gutierrez, T. Integrating Micro-Algae into Wastewater Treatment: A Review. Sci. Total Environ. 2021, 752, 142168.spa
dcterms.referencesGarcia-Martinez, J.B.; Urbina-Suarez, N.A.; Zuorro, A.; Barajas-Solano, A.F.; Kafarov, V. Fisheries Wastewater as a Sustainable Media for the Production of Algae-Based Products. Chem. Eng. Trans. 2019, 76, 1339–1344.spa
dcterms.referencesD ˛ebowski, M.; Zieli ´nski, M.; Kazimierowicz, J.; Kujawska, N.; Talbierz, S. Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations. Sustainability 2020, 12, 9980.spa
dcterms.referencesMehariya, S.; Goswami, R.K.; Verma, P.; Lavecchia, R.; Zuorro, A. Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries. Energies 2021, 14, 2282.spa
dcterms.referencesLeflay, H.; Okurowska, K.; Pandhal, J.; Brown, S. Pathways to Economic Viability: A Pilot Scale and Techno-Economic Assessment for Algal Bioremediation of Challenging Waste Streams. Environ. Sci. Water Res. Technol. 2020, 6, 3400–3414.spa
dcterms.referencesPaskuliakova, A.; McGowan, T.; Tonry, S.; Touzet, N. Microalgal Bioremediation of Nitrogenous Compounds in Landfill Leachate— The Importance of Micronutrient Balance in the Treatment of Leachates of Variable Composition. Algal Res. 2018, 32, 162–171.spa
dcterms.referencesin, L.; Chan, G.Y.S.; Jiang, B.L.; Lan, C.Y. Use of Ammoniacal Nitrogen Tolerant Microalgae in Landfill Leachate Treatment. Waste Manag. 2007, 27, 1376–1382.spa
dcterms.referencesTighiri, H.O.; Erkurt, E.A. Biotreatment of Landfill Leachate by Microalgae-Bacteria Consortium in Sequencing Batch Mode and Product Utilization. Bioresour. Technol. 2019, 286, 121396.spa
dcterms.referencesKholomyeva, M.; Vurm, R.; Tajnaiová, L.; Šír, M.; Maslova, M.; Koˇcí, V. Phycoremediation of Landfill Leachate with Desmodesmus Subspicatus: A Pre-Treatment for Reverse Osmosis. Water 2020, 12, 1755.spa
dcterms.referencesTagliaferro, G.V.; Filho, H.J.I.; Chandel, A.K.; da Silva, S.S.; Silva, M.B.; dos Santos, J.C. Continuous Cultivation of Chlorella Minutissima 26a in Landfill Leachate-Based Medium Using Concentric Tube Airlift Photobioreactor. Algal Res. 2019, 41, 101549.spa
dcterms.referencesPorto, B.; Gonçalves, A.L.; Esteves, A.F.; de Souza, S.M.G.U.; de Souza, A.A.; Vilar, V.J.; Pires, J.C. Assessing the Potential of Microalgae for Nutrients Removal from a Landfill Leachate Using an Innovative Tubular Photobioreactor. Chem. Eng. J. 2021, 413, 127546.spa
dcterms.referencesOkurowska, K.; Karunakaran, E.; Al-Farttoosy, A.; Couto, N.; Pandhal, J. Adapting the Algal Microbiome for Growth on Domestic Landfill Leachate. Bioresour. Technol. 2021, 319, 124246.spa
dcterms.referencesNordin, N.; Yusof, N.; Samsudin, S. Biomass Production of Chlorella Sp., Scenedesmus Sp., and Oscillatoria Sp. in Nitrified Landfill Leachate. Waste Biomass Valoriz. 2017, 8, 2301–2311.spa
dcterms.referencesEl Ouaer, M.; Turki, N.; Kallel, A.; Halaoui, M.; Trabelsi, I.; Hassen, A. Recovery of Landfill Leachate as Culture Medium for Two Microalgae: Chlorella Sp. and Scenedesmus Sp. Environ. Dev. Sustain. 2020, 22, 2651–2671.spa
dcterms.referencesEl Ouaer, M.; Kallel, A.; Kasmi, M.; Hassen, A.; Trabelsi, I. Tunisian Landfill Leachate Treatment Using Chlorella Sp.: Effective Factors and Microalgae Strain Performance. Arab. J. Geosci. 2017, 10, 457.spa
dcterms.referencesChang, H.; Zou, Y.; Hu, R.; Zhong, N.; Zhao, S.; Zheng, Y.; Qin, Y.; Feng, C. Kinetics of Landfill Leachate Remediation and Microalgae Metabolism as Well as Energy Potential Evaluation. J. Clean. Prod. 2020, 269, 122413.spa
dcterms.referencesChang, H.; Fu, Q.; Zhong, N.; Yang, X.; Quan, X.; Li, S.; Fu, J.; Xiao, C. Microalgal Lipids Production and Nutrients Recovery from Landfill Leachate Using Membrane Photobioreactor. Bioresour. Technol. 2019, 277, 18–26.spa
dcterms.referencesWhite, D.A.; Pagarette, A.; Rooks, P.; Ali, S.T. The Effect of Sodium Bicarbonate Supplementation on Growth and Biochemical Composition of Marine Microalgae Cultures. J. Appl. Phycol. 2013, 25, 153–165.spa
dcterms.referencesHernández-García, A.; Velásquez-Orta, S.B.; Novelo, E.; Yáñez-Noguez, I.; Monje-Ramírez, I.; Orta Ledesma, M.T. WastewaterLeachate Treatment by Microalgae: Biomass, Carbohydrate and Lipid Production. Ecotoxicol. Environ. Saf. 2019, 174, 435–444.spa
dcterms.referencesDogaris, I.; Loya, B.; Cox, J.; Philippidis, G. Study of Landfill Leachate as a Sustainable Source of Water and Nutrients for Algal Biofuels and Bioproducts Using the Microalga Picochlorum Oculatum in a Novel Scalable Bioreactor. Bioresour. Technol. 2019, 282, 18–27.spa
dcterms.referencesChang, H.; Quan, X.; Zhong, N.; Zhang, Z.; Lu, C.; Li, G.; Cheng, Z.; Yang, L. High-Efficiency Nutrients Reclamation from Landfill Leachate by Microalgae Chlorella Vulgaris in Membrane Photobioreactor for Bio-Lipid Production. Bioresour. Technol. 2018, 266, 374–381.spa
dcterms.referencesKumari, M.; Ghosh, P.; Thakur, I.S. Landfill Leachate Treatment Using Bacto-Algal Co-Culture: An Integrated Approach Using Chemical Analyses and Toxicological Assessment. Ecotoxicol. Environ. Saf. 2016, 128, 44–51.spa
dcterms.referencesBaird, R.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017.spa
dcterms.referencesAndersen, R.A.; Berges, J.A.; Harrison, P.J.; Watanabe, M.M. Appendix A—Recipes for Freshwater and Seawater Media. In Algal Culturing Techniques; Andersen, R.A., Ed.; Elsevier Academic Press: Burlington, MA, USA, 2005; pp. 429–538.spa
dcterms.referencesBarajas-Solano, A.F.; Guzmán-Monsalve, A.; Kafarov, V. Effect of Carbon-Nitrogen Ratio for the Biomass Production, Hydrocarbons and Lipids on Botryoccus Braunii UIS 003. Chem. Eng. Trans. 2016, 49, 247–252.spa
dcterms.referencesGarcía-Martínez, J.B.; Ayala-Torres, E.; Reyes-Gómez, O.; Zuorro, A.; Andrés, F.; Barajas-Solano, B.; Crisóstomo, C.; BarajasFerreira, B. Evaluation of a Two-Phase Extraction System of Carbohydrates and Proteins from Chlorella Vulgaris Utex 1803. Chem. Eng. Trans. 2016, 49, 355–360.spa
dcterms.referencesMishra, S.K.; Suh, W.I.; Farooq, W.; Moon, M.; Shrivastav, A.; Park, M.S.; Yang, J.W. Rapid Quantification of Microalgal Lipids in Aqueous Medium by a Simple Colorimetric Method. Bioresour. Technol. 2014, 155, 330–333.spa
dcterms.referencesMota, M.F.S.; Souza, M.F.; Bon, E.P.S.; Rodrigues, M.A.; Freitas, S.P. Colorimetric Protein Determination in Microalgae (Chlorophyta): Association of Milling and SDS Treatment for Total Protein Extraction. J. Phycol. 2018, 54, 577–580.spa
dcterms.referencesHynstova, V.; Sterbova, D.; Klejdus, B.; Hedbavny, J.; Huska, D.; Adam, V. Separation, Identification and Quantification of Carotenoids and Chlorophylls in Dietary Supplements Containing Chlorella Vulgaris and Spirulina Platensis Using High Performance Thin Layer Chromatography. J. Pharm. Biomed. Anal. 2018, 148, 108–118.spa
dcterms.referencesRasoul-Amini, S.; Montazeri-Najafabady, N.; Shaker, S.; Safari, A.; Kazemi, A.; Mousavi, P.; Mobasher, M.A.; Ghasemi, Y. Removal of Nitrogen and Phosphorus from Wastewater Using Microalgae Free Cells in Bath Culture System. Biocatal. Agric. Biotechnol. 2014, 3, 126–131.spa
dcterms.referencesNaveen, B.P.; Mahapatra, D.M.; Sitharam, T.G.; Sivapullaiah, P.V.; Ramachandra, T.V. Physico-Chemical and Biological Characterization of Urban Municipal Landfill Leachate. Environ. Pollut. 2017, 220, 1–12.spa
dcterms.referencesUrbina-Suarez, N.A.; Machuca-Martínez, F.; Barajas-Solano, A.F. Advanced Oxidation Processes and Biotechnological Alternatives for the Treatment of Tannery Wastewater. Molecules 2021, 26, 3222.spa
dcterms.referencesKurniawan, T.A.; Lo, W.; Chan, G.Y.S. Physico-Chemical Treatments for Removal of Recalcitrant Contaminants from Landfill Leachate. J. Hazard. Mater. 2006, 129, 80–100.spa
dcterms.referencesPancha, I.; Chokshi, K.; Ghosh, T.; Paliwal, C.; Maurya, R.; Mishra, S. Bicarbonate Supplementation Enhanced Biofuel Production Potential as Well as Nutritional Stress Mitigation in the Microalgae Scenedesmus Sp. CCNM 1077. Bioresour. Technol. 2015, 193, 315–323.spa
dcterms.referencesDuan, Y.; Guo, X.; Yang, J.; Zhang, M.; Li, Y. Nutrients Recycle and the Growth of Scenedesmus Obliquus in Synthetic Wastewater under Different Sodium Carbonate Concentrations. R. Soc. Open Sci. 2022, 7, 191214.spa
dcterms.referencesAnsah, E.; Wang, L.; Zhang, B.; Shahbazi, A. Catalytic Pyrolysis of Raw and Hydrothermally Carbonized Chlamydomonas Debaryana Microalgae for Denitrogenation and Production of Aromatic Hydrocarbons. Fuel 2018, 228, 234–242.spa
dcterms.referencesCosta, J.A.V.; de Freitas, B.C.B.; Lisboa, C.R.; Santos, T.D.; de Fraga Brusch, L.R.; de Morais, M.G. Microalgal Biorefinery from CO2 and the Effects under the Blue Economy. Renew. Sustain. Energy Rev. 2019, 99, 58–65.spa
dcterms.referencesQuintero-Dallos, V.; García-Martínez, J.B.; Contreras-Ropero, J.E.; Barajas-Solano, A.F.; Barajas-Ferrerira, C.; Lavecchia, R.; Zuorro, A. Vinasse as a Sustainable Medium for the Production of Chlorella vulgaris UTEX 1803. Water 2019, 11, 1526.spa
dcterms.referencesLu, W.; Alam, M.A.; Liu, S.; Xu, J.; Saldivar, R.P. Critical Processes and Variables in Microalgae Biomass Production Coupled with Bioremediation of Nutrients and CO2 from Livestock Farms: A Review. Sci. Total Environ. 2020, 716, 135247.spa
dcterms.referencesZuorro, A.; Lavecchia, R.; Maffei, G.; Marra, F.; Miglietta, S.; Petrangeli, A.; Familiari, G.; Valente, T. Enhanced lipid extraction from unbroken microalgal cells using enzymes. Chem. Eng. Trans. 2015, 43, 211–216.spa
dcterms.referencesGuiza-Franco, L.; Orozco-Rojas, L.G.; Sanchez-Galvis, M.; Garcia-Martinez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F. Production of Chlorella Vulgaris Biomass on UV-Treated Wastewater as an Alternative for Environmental Sustainability on High-Mountain Fisheries. Chem. Eng. Trans. 2018, 64, 517–522.spa
dcterms.referencesLi, J.; Li, C.; Lan, C.Q.; Liao, D. Effects of Sodium Bicarbonate on Cell Growth, Lipid Accumulation, and Morphology of Chlorella Vulgaris. Microb. Cell Fact. 2018, 17, 111.spa
dcterms.referencesCuéllar-García, D.J.; Rangel-Basto, Y.A.; Urbina-Suarez, N.A.; Barajas-Solano, A.F.; Muñoz-Peñaloza, Y.A. Lipids Production from Scenedesmus Obliquus through Carbon/Nitrogen Ratio Optimization. J. Phys. Conf. Ser. 2019, 1388, 12043.spa
dcterms.referencesCuellar García, D.J.; Rangel-Basto, Y.A.; Barajas-Solano, A.F.; Muñoz-Peñalosa, Y.A.; Urbina-Suarez, N.A. Towards the Production of Microalgae Biofuels: The Effect of the Culture Medium on Lipid Deposition. Biotechnologia 2019, 100, 273–278.spa
dcterms.referencesVijay, A.K.; Salim, S.A.M.; Prabha, S.; George, B. Exogenous Carbon Source and Phytohormone Supplementation Enhanced Growth Rate and Metabolite Production in Freshwater Microalgae Scenedesmus Obtusus Meyen. Bioresour. Technol. Rep. 2021, 14, 100669.spa
dcterms.referencesChaudry, S.; Bahri, P.A.; Moheimani, N.R. Pathways of Processing of Wet Microalgae for Liquid Fuel Production: A Critical Review. Renew. Sustain. Energy Rev. 2015, 52, 1240–1250.spa
dcterms.referencesXu, D.; Lin, G.; Guo, S.; Wang, S.; Guo, Y.; Jing, Z. Catalytic Hydrothermal Liquefaction of Algae and Upgrading of Biocrude: A Critical Review. Renew. Sustain. Energy Rev. 2018, 97, 103–118.spa
dcterms.referencesGuo, Y.; Yeh, T.; Song, W.; Xu, D.; Wang, S. A Review of Bio-Oil Production from Hydrothermal Liquefaction of Algae. Renew. Sustain. Energy Rev. 2015, 48, 776–790.spa
dcterms.referencesTekin, K.; Karagöz, S.; Bekta¸s, S. A Review of Hydrothermal Biomass Processing. Renew. Sustain. Energy Rev. 2014, 40, 673–687.spa
dcterms.referencesPavloviˇc, I.; Knez, Ž.; Škerget, M. Hydrothermal Reactions of Agricultural and Food Processing Wastes in Sub- and Supercritical Water: A Review of Fundamentals, Mechanisms, and State of Research. J. Agric. Food Chem. 2013, 61, 8003–8025.spa
dc.contributor.corporatenameApplied Sciencesspa
dc.identifier.doihttps://doi.org/10.3390/app12052462
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol. 12 No° 5 [2022]spa
dc.relation.citationendpage12spa
dc.relation.citationissue5[2022]spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume12spa
dc.relation.citesOrtiz-Betancur, J.J.; HerreraOchoa, M.S.; García-Martínez, J.B.; Urbina-Suarez, N.A.; López-Barrera, G.L.; Barajas-Solano, A.F.; Bryan, S.J.; Zuorro, A. Application of Chlorella sp. and Scenedesmus sp. in the Bioconversion of Urban Leachates into Industrially Relevant Metabolites. Appl. Sci. 2022, 12, 2462. https://doi.org/10.3390/app12052462
dc.relation.ispartofjournalApplied Sciencesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalChlorella speng
dc.subject.proposalScenedesmus speng
dc.subject.proposallipidseng
dc.subject.proposalwaste reductioneng
dc.subject.proposalnutrients removaleng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 by the authors
Except where otherwise noted, this item's license is described as © 2022 by the authors