Mostrar el registro sencillo del ítem

dc.contributor.authorGamboa Mora, María Cristina
dc.contributor.authorRincón Gamboa, Sandra M.
dc.contributor.authorArdila Leal, Leidy Diana
dc.contributor.authorPoutou-Piñales, Raúl Alberto
dc.contributor.authorPedroza, Aura
dc.contributor.authorQuevedo, Balkys
dc.date.accessioned2022-11-19T16:04:47Z
dc.date.available2022-11-19T16:04:47Z
dc.date.issued2022-07-11
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6557
dc.description.abstractThe first traces of Tetracycline (TE) were detected in human skeletons from Sudan and Egypt, finding that it may be related to the diet of the time, the use of some dyes, and the use of soils loaded with microorganisms, such as Streptomyces spp., among other microorganisms capable of producing antibiotics. However, most people only recognise authors dating between 1904 and 1940, such as Ehrlich, Domagk, and Fleming. Antibiotics are the therapeutic option for countless infections treatment; unfortunately, they are the second most common group of drugs in wastewaters worldwide due to failures in industrial waste treatments (pharmaceutics, hospitals, senior residences) and their irrational use in humans and animals. The main antibiotics problem lies in delivered and non-prescribed human use, use in livestock as growth promoters, and crop cultivation as biocides (regulated activities that have not complied in some places). This practice has led to the toxicity of the environment as antibiotics generate eutrophication, water pollution, nutrient imbalance, and press antibiotic resistance. In addition, the removal of antibiotics is not a required process in global wastewater treatment standards. This review aims to raise awareness of the negative impact of antibiotics as residues and physical, chemical, and biological treatments for their degradation. We discuss the high cost of physical and chemical treatments, the risk of using chemicals that worsen the situation, and the fact that each antibiotic class can be transformed differently with each of these treatments and generate new compounds that could be more toxic than the original ones; also, we discuss the use of enzymes for antibiotic degradation, with emphasis on laccases.eng
dc.format.extent44spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherMoleculesspa
dc.relation.ispartofMolecules. vol 27 No°14[2022]
dc.rights© 2022 by the authorseng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/1420-3049/27/14/4436spa
dc.titleImpact of Antibiotics as Waste, Physical, Chemical, and Enzymatical Degradation: Use of Laccaseseng
dc.typeArtículo de revistaspa
dcterms.referencesAminov, R.I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 2010, 1, 134.spa
dcterms.referencesSpagnolo, F.; Trujillo, M.; Dennehya, J.J. Why do antibiotics exist? mBio 2021, 12, e01966-21.spa
dcterms.referencesCheca Artos, M.; Sosa del Castillo, D.; Ruiz Barzola, O.; Barcos-Arias, M. Presencia de productos farmacéuticos en el agua y su impacto en el ambiente. Bionat 2021, 6, 1618–1627.spa
dcterms.referencesBecker, D.; Varela Della Giustina, S.; Rodriguez-Mozaz, S.; Schoevaart, R.; Barcelo, D.; de Cazes, M.; Belleville, M.P.; Sanchez-Marcano, J.; de Gunzburg, J.; Couillerot, O.; et al. Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase—Degradation of compounds does not always eliminate toxicity. Bioresour. Technol. 2016, 219, 500–509.spa
dcterms.referencesSilbergeld, E.K.; Graham, J.; Price, L.B. Industrial food animal production, antimicrobial resistance, and human health. Annu. Rev. Public Health 2008, 29, 151–169.spa
dcterms.referencesTaylor, P.; Reeder, R. Antibiotic use on crops in low and middle-income countries based on recommendations made by agricultural advisors. CABI Agric. Biosci. 2020, 1, 1.spa
dcterms.referencesU.S. Food and Drug Administration (FDA). Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals; U.S. Food and Drug Administration (FDA): Washington, DC, USA, 2019; p. 49.spa
dcterms.referencesSarmah, A.K.; Meyer, M.T.; Boxall, A.B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759.spa
dcterms.referencesOsei Sekyere, J. Antibiotic Types and Handling Practices in Disease Management among Pig Farms in Ashanti Region, Ghana. J. Vet. Med. 2014, 2014, 531952.spa
dcterms.referencesFerrari, B.t.; Paxéus, N.; Giudice, R.L.; Pollio, A.; Garric, J. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: Study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol. Environ. Safe 2003, 55, 359–370.spa
dcterms.referencesArenas, N.E.; Moreno-Melo, V. Producción pecuaria y emergencia de antibiótico resistencia en Colombia: Revisión sistemática. Infection 2018, 22, 110–119.spa
dcterms.referencesMobarki, N.; Almerabi, B.; Hattan, A. Antibiotic resistance crisis. Int. J. Med. Devel. Count. 2019, 40, 561–564.spa
dcterms.referencesLeder, C.; Suk, M.; Lorenz, S.; Rastogi, T.; Peifer, C.; Kietzmann, M.; Jonas, D.; Buck, M.; Pahl, A.; Kümmerer, K. Reducing Environmental Pollution by Antibiotics through Design for Environmental Degradation. ACS Sustain. Chem. Eng. 2021, 9, 9358–9368.spa
dcterms.referencesSundararaman, S.; Aravind Kumar, J.; Deivasigamani, P.; Devarajan, Y. Emerging pharma residue contaminants: Occurrence, monitoring, risk and fate assessment—A challenge to water resource management. Sci. Total. Environ. 2022, 825, 153897.spa
dcterms.referencesSzyma ´nska, U.; Wiergowski, M.; Sołtyszewski, I.; Kuzemko, J.; Wiergowska, G.; Wo´zniak, M.K. Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: Recent trends and perspectives. Microchem. J. 2019, 147, 729–740.spa
dcterms.referencesBedner, M.; Maccrehan, W.A. Transformation of acetaminophen by chlorination produces the toxicants 1,4-Benzoquinone and N-Acetyl-p-benzoquinone Imine. Environ. Sci. Technol. 2006, 40, 516–522.spa
dcterms.referencesPoutou, R.A.; Sánchez, L.; Díaz, K.; Máttar, S. Mecanismos de resistencia a los antibióticos betha-lactámicos. Med. UIS 1999, 13, 172–177.spa
dcterms.referencesDenyer, S.P.; Hodges, N.A.; Gorman, S.P. Hugo and Russell’s Pharmaceutical Microbiology; Blackwell Science, Inc.: Oxford, UK, 2004.spa
dcterms.referencesEuropean Centre for Disease Prevention and Control (ECDC). Antimicrobial Consumption in the EU/EEA; Annual Epidemiological Report for 2019; European Centre for Disease Prevention and Control (ECDC): Stockholm, Sweden, 2019; p. 25.spa
dcterms.referencesClinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing (CLSI M100-S17); Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2007; p. 182.spa
dcterms.referencesWorld Health Organization (WHO). WHO Report on Surveillance of Antibiotic Consumption: 2016–2018 Early Implementation; World Health Organization (WHO): Geneva, Switzerland, 2018; p. 127.spa
dcterms.referencesWorld Health Organization. Critically important antimicrobials for human medicine. In Ranking of Medically Important Antimicrobials for Risk Management of Antimicrobial Resistance due to Non-Human Use, 6th Revision 2018; WHO: Geneva, Switzerland, 2018.spa
dcterms.referencesForge, A.; Schacht, J. Aminoglycoside antibiotics. Audiol. Neurootol. 2000, 5, 3–22.spa
dcterms.referencesVigliarolo, L.O.; Di Pinto, P.M.; Suárez, M.C.; Lopardo, H.A.; Viegas Caetano, J.A. Antibióticos: Clasificación, Estructura, Mecanismos de Acción y Resistencia; Lopardo, H.A., Ed.; EDULP: Buenos Aires, Argentina, 2020; p. 191.spa
dcterms.referencesSuarez, C.; Gudiol, F. Beta-lactam antibiotics. Enferm. Infecc. Microbiol. Clin. 2009, 27, 116–129.spa
dcterms.referencesEl-Gamal, M.I.; Brahim, I.; Hisham, N.; Aladdin, R.; Mohammed, H.; Bahaaeldin, A. Recent updates of carbapenem antibiotics. Eur. J. Med. Chem. 2017, 131, 185–195.spa
dcterms.referencesEl-Shaboury, S.R.; Saleh, G.A.; Mohamed, F.A.; Rageh, A.H. Analysis of cephalosporin antibiotics. J. Pharm. Biomed. Anal. 2007, 45, 1–19.spa
dcterms.referencesBrewer, N.S.; Hellinger, W.C. The Monobactams. Mayo. Clin. Proc. 1991, 66, 1152–1157.spa
dcterms.referencesGarcia-Quetglas, E.; Azanza, J.R.; Sadaba, B.; Gil-Aldea, I. Farmacología de antimicrobianos utilizados en el tratamiento de las infecciones graves por bacterias Grampositivas. Rev. Esp. Quimioterap. 2003, 16, 277–288.spa
dcterms.referencesBurdette, S.D.; Trotman, R. Tedizolid: The First Once-Daily Oxazolidinone Class Antibiotic. Clin. Infect. Dis. 2015, 61, 1315–1321.spa
dcterms.referencesCalvo, J.; Martinez-Martinez, L. Mecanismos de acción de los antimicrobianos. Enfem. Infecc. Microbiol. Clín. 2009, 27, 44–52.spa
dcterms.referencesFlamm, R.K.; Farrell, D.J.; Rhomberg, P.R.; Scangarella-Oman, N.E.; Sader, H.S. Gepotidacin (GSK2140944) In Vitro Activity against Gram-Positive and Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2017, 61, e00468-17.spa
dcterms.referencesCholo, M.C.; Steel, H.C.; Fourie, P.B.; Germishuizen, W.A.; Anderson, R. Clofazimine: Current status and future prospects. J. Antimicrob. Chemother. 2012, 67, 290–298.spa
dcterms.referencesGarcía-Rodríguez, J.A.; Gutiérrez Zufiaurre, N.; Muñoz Bellido, L.J. Ácido fusídico. Rev. Esp. Quimioterap. 2003, 16, 161–171.spa
dcterms.referencesChopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260.spa
dcterms.referencesQian, H.; Li, J.; Pan, X.; Sun, Z.; Ye, C.; Jin, G.; Fu, Z. Effects of streptomycin on growth of algae Chlorella vulgaris and Microcystis aeruginosa. Environ. Toxicol. 2012, 27, 229–237.spa
dcterms.referencesWollenberger, L.; Halling-Sorensen, B.; Kusk, K.O. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 2000, 40, 723–730.spa
dcterms.referencesLiljebjelke, K.A.; Hofacre, C.L.; White, D.G.; Ayers, S.; Lee, M.D.; Maurer, J.J. Diversity of Antimicrobial Resistance Phenotypes in Salmonella Isolated from Commercial Poultry Farms. Front. Vet. Sci. 2017, 4, 96.spa
dcterms.referencesLuczkiewicz, A.; Jankowska, K.; Fudala-Ksiazek, S.; Olanczuk-Neyman, K. Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant. Water Res. 2010, 44, 5089–5097.spa
dcterms.referencesAvent, M.L.; Rogers, B.A.; Cheng, A.C.; Paterson, D.L. Current use of aminoglycosides: Indications, pharmacokinetics and monitoring for toxicity. Intern. Med. J. 2011, 41, 441–449.spa
dcterms.referencesTurnidge, J. Pharmacodynamics and dosing of aminoglycosides. Infect. Dis. Clin. N. Am. 2003, 17, 503–528.spa
dcterms.referencesDuarte, J.L.d.S.; Solano, A.M.S.; Arguelho, M.L.P.M.; Tonholo, J.; Martínez-Huitle, C.A.; Zanta, C.L.d.P.e.S. Evaluation of treatment of effluents contaminated with rifampicin by Fenton, electrochemical and associated processes. J. Water Proc. Eng. 2018, 22, 250–257.spa
dcterms.referencesWorld Health Organization (WHO). Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early Implementation 2016–2017; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2017; 164p.spa
dcterms.referencesHavelkova, B.; Beklova, M.; Kovacova, V.; Hlavkova, D.; Pikula, J. Ecotoxicity of selected antibiotics for organisms of aquatic and terrestrial ecosystems. Neuroendocrinol. Lett. 2016, 37, 38–44.spa
dcterms.referencesRanjbar, R.; Sami, M. Genetic Investigation of Beta-Lactam Associated Antibiotic Resistance Among Escherichia Coli Strains Isolated from Water Sources. Open Microbiol. J. 2017, 11, 203–210.spa
dcterms.referencesHoelle, J.; Johnson, J.R.; Johnston, B.D.; Kinkle, B.; Boczek, L.; Ryu, H.; Hayes, S. Survey of US wastewater for carbapenem-resistant Enterobacteriaceae. J. Water Health 2019, 17, 219–226.spa
dcterms.referencesYilmaz, C.; Ozcengiz, G. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochem. Pharmacol. 2017, 133, 43–62.spa
dcterms.referencesDas, N.; Madhavan, J.; Selvi, A.; Das, D. An overview of cephalosporin antibiotics as emerging contaminants: A serious environmental concern. 3 Biotech. 2019, 9, 231.spa
dcterms.referencesBarriere, S.L. Pharmacology and Pharmacokinetics of Cefprozil. Clin. Infect. Dis. 1992, 14, S184–S188.spa
dcterms.referencesSelvi, A.; Salam, J.A.; Das, N. Biodegradation of cefdinir by a novel yeast strain, Ustilago sp. SMN03 isolated from pharmaceutical wastewater. World J. Microbiol. Biotechnol. 2014, 30, 2839–2850.spa
dcterms.referencesYu, X.; Tang, X.; Zuo, J.; Zhang, M.; Chen, L.; Li, Z. Distribution and persistence of cephalosporins in cephalosporin producing wastewater using SPE and UPLC-MS/MS method. Sci. Total Environ. 2016, 569–570, 23–30.spa
dcterms.referencesBruyndonckx, R.; Adriaenssens, N.; Hens, N.; Versporten, A.; Monnet, D.L.; Molenberghs, G.; Goossens, H.; Weist, K.; Coenen, S.; Group, E.S.-N.s. Consumption of penicillins in the community, European Union/European Economic Area, 1997–2017. J. Antimicrob. Chemother. 2021, 76, ii14–ii21.spa
dcterms.referencesBodey, G.P.; Nance, J. Amoxicillin: In Vitro and Pharmacological Studies. Antimicrob. Age Chemother. 1972, 1, 358–362.spa
dcterms.referencesIghalo, J.O.; Igwegbe, C.A.; Aniagor, C.O.; Oba, S.N. A review of methods for the removal of penicillins from water. J. Water Prc. Eng. 2021, 39, 101886.spa
dcterms.referencesArslan-Alaton, I.; Caglayan, A.E. Toxicity and biodegradability assessment of raw and ozonated procaine penicillin G formulation effluent. Ecotoxicol. Environ. Saf. 2006, 63, 131–140.spa
dcterms.referencesSzekeres, E.; Baricz, A.; Chiriac, C.M.; Farkas, A.; Opris, O.; Soran, M.L.; Andrei, A.S.; Rudi, K.; Balcazar, J.L.; Dragos, N.; et al. Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Environ. Pollut. 2017, 225, 304–315.spa
dcterms.referencesFelis, E.; Kalka, J.; Sochacki, A.; Kowalska, K.; Bajkacz, S.; Harnisz, M.; Korzeniewska, E. Antimicrobial pharmaceuticals in the aquatic environment—Occurrence and environmental implications. Eur. J. Pharmacol. 2020, 866, 172813.spa
dcterms.referencesMcGuinness, W.A.; Malachowa, N.; DeLeo, F.R. Vancomycin Resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017, 90, 269–281.spa
dcterms.referencesStein, G.E.; Babinchak, T. Tigecycline: An update. Diagn. Microbiol. Infect. Dis. 2013, 75, 331–336.spa
dcterms.referencesEl-Azazy, M.; El-Shafie, A.S.; Al-Meer, S.; Al-Saad, K.A. Eco-structured Adsorptive Removal of Tigecycline from Wastewater: Date Pits’ Biochar versus the Magnetic Biochar. Nanomaterials 2020, 11, 30.spa
dcterms.referencesZurfuh, K.; Poirel, L.; Nordmann, P.; Nuësch-Inderbinen, M.; Chler, H.H.; Stephan, R. Occurrence of the plasmid-borne mcr-1 colistin resistance gene in extended-spectrum-lactamase-producing Enterobacteriaceae in river water and imported vegetable samples in Switzerland. Antimicrob. Age Chemother. 2016, 60, 2594–2595.spa
dcterms.referencesHembach, N.; Schmid, F.; Alexander, J.; Hiller, C.; Rogall, E.T.; Schwartz, T. Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany. Front. Microbiol. 2017, 8, 1282.spa
dcterms.referencesSong, X.; Turiel, E.; He, L.; Martin-Esteban, A. Synthesis of Molecularly Imprinted Polymers for the Selective Extraction of Polymyxins from Environmental Water Samples. Polymers 2020, 12, 131.spa
dcterms.referencesRincón-Gamboa, S.M.; Poutou-Piñales, R.A.; Carrascal-Camacho, A.K. Antimicrobial resistance of Non-Typhoid Salmonella in meat and meat products. Foods 2021, 10, 1731.spa
dcterms.referencesHirsch, R.; Ternes, T.; Haberer, K.; Kratz, K.-L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999, 225, 109–118.spa
dcterms.referencesManagaki, S.; Murata, A.; Takada, H.; Tuyen, B.C.; Chiem, N.H. Distribution of Macrolides, Sulfonamides, and Trimethoprim in Tropical Waters: Ubiquitous Occurrence of Veterinary Antibiotics in the Mekong Delta. Environ. Sci. Technol. 2007, 41, 8004–8010.spa
dcterms.referencesZhang, C.; You, S.; Zhang, J.; Qi, W.; Su, R.; He, Z. An effective in-situ method for laccase immobilization: Excellent activity, effective antibiotic removal rate and low potential ecological risk for degradation products. Bioresour. Technol. 2020, 308, 123271.spa
dcterms.referencesAlmeida, L.M.; Gaca, A.; Bispo, P.M.; Lebreton, F.; Saavedra, J.T.; Silva, R.A.; Basilio-Junior, I.D.; Zorzi, F.M.; Filsner, P.H.; Moreno, A.M.; et al. Coexistence of the Oxazolidinone Resistance-Associated Genes cfr and optrA in Enterococcus faecalis From a Healthy Piglet in Brazil. Front. Public Health 2020, 8, 518.spa
dcterms.referencesZhou, Y.; Li, J.; Schwarz, S.; Zhang, S.; Tao, J.; Fan, R.; Walsh, T.R.; Wu, C.; Wang, Y. Mobile oxazolidinone/phenicol resistance gene optrA in chicken Clostridium perfringens. J. Antimicrob. Chemother. 2020, 75, 3067–3069.spa
dcterms.referencesTimm, A.; Abendschon, P.; Tolgyesi, L.; Horn, H.; Borowska, E. Solar-mediated degradation of linezolid and tedizolid under simulated environmental conditions: Kinetics, transformation and toxicity. Chemosphere 2020, 241, 125111.spa
dcterms.referencesShaw, K.J.; Barbachyn, M.R. The oxazolidinones: Past, present, and future. Ann. N. Y. Acad. Sci. 2011, 1241, 48–70.spa
dcterms.referencesWorld Health Organization (WHO). Model List of Essential Medicines—22nd List; World Health Organization: Geneva, Switzerland, 2021; 66p.spa
dcterms.referencesMerazi, Y.; Hammadi, K.; Fedoul, F.F. An investigation of the practices of veterinarians and breeders in the prevalence of antibiotic resistance in poultry farms in Algeria. Nat. Technol. 2021, 13, 14–33.spa
dcterms.referencesKeating, G.M. Fosfomycin trometamol: A review of its use as a single-dose oral treatment for patients with acute lower urinary tract infections and pregnant women with asymptomatic bacteriuria. Drugs 2013, 73, 1951–1966.spa
dcterms.referencesTakahata, S.; Ida, T.; Hiraishi, T.; Sakakibara, S.; Maebashi, K.; Terada, S.; Muratani, T.; Matsumoto, T.; Nakahama, C.; Tomono, K. Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int. J. Antimicrob. Agents 2010, 35, 333–337.spa
dcterms.referencesFalagas, M.E.; Athanasaki, F.; Voulgaris, G.L.; Triarides, N.A.; Vardakas, K.Z. Resistance to fosfomycin: Mechanisms, Frequency and Clinical Consequences. Int. J. Antimicrob. Agents 2019, 53, 22–28.spa
dcterms.referencesZeng, P.; Xie, X.; Song, Y.; Liu, R.; Zhu, C.; Galarneau, A.; Pic, J.S. Ion chromatography as highly suitable method for rapid and accurate determination of antibiotic fosfomycin in pharmaceutical wastewater. Water Sci. Technol. 2014, 69, 2014–2022.spa
dcterms.referencesGolet, E.M.; Xifra, i.; Siegrist, H.; Alder, A.C.; Giger, W. Environmental exposure Assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ. Sci. Technol. 2003, 37, 3243–3249.spa
dcterms.referencesZhang, Z.; Cheng, H. Recent Development in Sample Preparation and Analytical Techniques for Determination of Quinolone Residues in Food Products. Crit. Rev. Anal. Chem. 2017, 47, 223–250.spa
dcterms.referencesCastrignano, E.; Kannan, A.M.; Proctor, K.; Petrie, B.; Hodgen, S.; Feil, E.J.; Lewis, S.E.; Lopardo, L.; Camacho-Munoz, D.; Rice, J.; et al. (Fluoro)quinolones and quinolone resistance genes in the aquatic environment: A river catchment perspective. Water Res. 2020, 182, 116015.spa
dcterms.referencesKergaravat, S.V.; Hernandez, S.R.; Gagneten, A.M. Second-, third- and fourth-generation quinolones: Ecotoxicity effects on Daphnia and Ceriodaphnia species. Chemosphere 2021, 262, 127823.spa
dcterms.referencesPham, T.D.M.; Ziora, Z.M.; Blaskovich, M.A.T. Quinolone antibiotics. Med. Chem. Commun. 2019, 10, 1719–1739.spa
dcterms.referencesSchwarz, S.; Kehrenberg, C.; Doublet, B.; Cloeckaert, A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 2004, 28, 519–542.spa
dcterms.referencesOliveira Toledo, S.L.; Silveira Silva, R.M.; Rodrigues dos Santos, I.C.; Lima, W.G.; Rodrigues Ferreira, L.G.; Paiva, M.C. Domestic wastewater treatment plants as sources of macrolide-lincosamide-streptogramin B- and penicillin-resistant Staphylococcus aureus in Brazil. Rev. Colomb. Cien. Quím.-Farm. 2020, 49, 267–279.spa
dcterms.referencesGuo, X.; Yan, Z.; Zhang, Y.; Xu, W.; Kong, D.; Shan, Z.; Wang, N. Behavior of antibiotic resistance genes under extremely high-level antibiotic selection pressures in pharmaceutical wastewater treatment plants. Sci. Total Environ. 2018, 612, 119–128.spa
dcterms.referencesDadashi, M.; Hajikhani, B.; Darban-Sarokhalil, D.; van Belkum, A.; Goudarzi, M. Mupirocin resistance in Staphylococcus aureus: A systematic review and meta-analysis. J. Glob. Antimicrob. Resist. 2020, 20, 238–247.spa
dcterms.referencesHoldiness, M.R. Clinical pharmacokinetics of clofazimine: A review. Clin. Pharmacokinet. 1989, 16, 74–85.spa
dcterms.referencesWilliamson, D.A.; Monecke, S.; Heffernan, H.; Ritchie, S.R.; Roberts, S.A.; Upton, A.; Thomas, M.G.; Fraser, J.D. High usage of topical fusidic acid and rapid clonal expansion of fusidic acid-resistant Staphylococcus aureus: A cautionary tale. Clin. Infect. Dis. 2014, 59, 1451–1454.spa
dcterms.referencesHruska, K.; Franek, M. Sulfonamides in the environment: A review and a case report. Vet. Med. 2012, 57, 1–35.spa
dcterms.referencesVila-Costa, M.; Gioia, R.; Acena, J.; Perez, S.; Casamayor, E.O.; Dachs, J. Degradation of sulfonamides as a microbial resistance mechanism. Water Res. 2017, 115, 309–317.spa
dcterms.referencesScholar, E. Tetracycline. In X Pharm: The Comprehensive Pharmacology Reference; Dowd, F.J., Murrin, L.C., Ralevic, V., Scholar, E.M., Summers, R.J., Tew, K.D., Wecker, L., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2008; pp. 1–4.spa
dcterms.referencesPulicharla, R.; Brar, S.K.; Rouissi, T.; Auger, S.; Drogui, P.; Verma, M.; Surampalli, R.Y. Degradation of chlortetracycline in wastewater sludge by ultrasonication, Fenton oxidation, and ferro-sonication. Ultrason. Sonochem. 2017, 34, 332–342.spa
dcterms.referencesXu, L.; Zhang, H.; Xiong, P.; Zhu, Q.; Liao, C.; Jiang, G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ. 2021, 753, 141975.spa
dcterms.referencesPage, S.W.; Gautier, P. Use of antimicrobial agents in livestock. Rev. Sci. Tech. 2012, 31, 145–188.spa
dcterms.referencesEl Parlamento Europeo; Consejo de la Unión Europea. Reglamento (UE) 2019/6 del Parlamento Europeo y del Consejo de 11de Diciembre de 2018; El Parlamento Europeo: Washington, DC, USA, 2019; p. 125.spa
dcterms.referencesWorld Health Organization. Initiative to Estimate the Global Burden of Foodborne Diseases: Fourth Formal Meeting of the Foodborne Disease Burden Epidemiology Reference Group (FERG): Sharing New Results, Making Future Plans, and Preparing Ground for the Countries; World Health Organization: Geneva, Switzerland, 2014; p. 108.spa
dcterms.referencesDestro, M.T.; Ribeiro, V.B. Foodborne Zoonoses. In Encyclopedia of Meat Sciences; Devine, C., Dikeman, M., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 17–21.spa
dcterms.referencesGebeyehu, D.T. Antibiotic Resistance Development in Animal Production: A Cross-Sectional Study. Vet. Med. Res. Rep. 2021, 12, 101–108.spa
dcterms.referencesKraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 2019, 7, 180.spa
dcterms.referencesCheccucci, A.; Trevisi, P.; Luise, D.; Modesto, M.; Blasioli, S.; Braschi, I.; Mattarelli, P. Exploring the Animal Waste Resistome: The Spread of Antimicrobial Resistance Genes Through the Use of Livestock Manure. Front. Microbiol. 2020, 11, 1416.spa
dcterms.referencesDomenech, E.; Jimenez-Belenguer, A.; Amoros, J.A.; Ferrus, M.A.; Escriche, I. Prevalence and antimicrobial resistance of Listeria monocytogenes and Salmonella strains isolated in ready-to-eat foods in Eastern Spain. Food Cont. 2015, 47, 120–125.spa
dcterms.referencesSallam, K.I.; Mohammed, M.A.; Hassan, M.A.; Tamura, T. Prevalence, molecular identification and antimicrobial resistance profile of Salmonella serovars isolated from retail beef products in Mansoura, Egypt. Food Cont. 2014, 38, 209–214.spa
dcterms.referencesAbd-Elghany, S.M.; Sallam, K.I.; Abd-Elkhalek, A.; Tamura, T. Occurrence, genetic characterization and antimicrobial resistance of Salmonella isolated from chicken meat and giblets. Epidemiol. Infect. 2015, 143, 997–1003.spa
dcterms.referencesNguyen, D.T.A.; Kanki, M.; Nguyen, P.D.; Le, H.T.; Ngo, P.T.; Tran, D.N.M.; Le, N.H.; Van Dang, C.; Kawai, T.; Kawahara, R.; et al. Prevalence, antibiotic resistance, and extended-spectrum and AmpC β-lactamase productivity of Salmonella isolates from raw meat and seafood samples in Ho Chi Minh City, Vietnam. Int. J. Food Microbiol. 2016, 236, 115–122.spa
dcterms.referencesAyala-Romero, C.; Ballen-Parada, C.; Rico-Gaitán, M.; Chamorro-Tobar, I.; Zambrano-Moreno, D.; Poutou-Piñales, R.; CarrascalCamacho, A. Prevalence of Salmonella spp., in mesenteric pig’s ganglia at Colombian benefit plants. Rev. MVZ-Córdoba 2018, 23, 6474–6486.spa
dcterms.referencesLöfström, C.; Hansen, T.; Maurischat, S.; Malorny, B. Salmonella: Salmonellosis. In Encyclopedia of Food and Health; Caballero, B., Finglas, P., Toldra, F., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 701–705.spa
dcterms.referencesSánchez-Vargas, F.M.; Abu-El-Haija, M.A.; Gómez-Duarte, O.G. Salmonella infections: An update on epidemiology, management, and prevention. Travel. Med. Infect. Dis. 2011, 9, 263–277.spa
dcterms.referencesDe Jong, A.; Bywater, R.; Butty, P.; Deroover, E.; Godinho, K.; Klein, U.; Marion, H.; Simjee, S.; Smets, K.; Thomas, V.; et al. A pan-European survey of antimicrobial susceptibility towards human-use antimicrobial drugs among zoonotic and commensal enteric bacteria isolated from healthy food-producing animals. J. Antimicrob. Chemother. 2009, 63, 733–744.spa
dcterms.referencesAntunes, P.; Mourão, J.; Campos, J.; Peixe, L. Salmonellosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 110–121.spa
dcterms.referencesMarquis, H.; Drevets, D.A.; Bronze, M.S.; Kathariou, S.; Golos, T.G.; Iruretagoyena, J.I. Pathogenesis of Listeria Monocytogenes in Humans. In HUMAN Emerging and Re-emerging Infections: Viral and Parasitic Infections; Singh, S.K., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 749–772.spa
dcterms.referencesTorres, K.J.; Sierra, S.C.; Poutou, R.A.; Vera, H.; Carrascal, A.K.; Mercado, M. Incidencia y diagnóstico de Listeria monocytogenes; microorganismo zoonótico emergente en la industria de alimentos. Rev. UDCA Act. Divulg. Cient 2004, 7, 25–57.spa
dcterms.referencesTorres, K.J.; Sierra, S.C.; Poutou, R.A.; Carrascal, A.K.; Mercado, M. Patogénesis de Listeria monocytogenes, microorganismo zoonótico emergente. Rev. MVZ-Córdoba 2005, 10, 511–543.spa
dcterms.referencesBelalcazar, M.E.; Poutou, R.A.; Torres, K.J.; Gallegos, J.M.; Torres, O.; Carrascal, A.K. Listeria monocytogenes y listeriosis animal. Rev. UDCA Act. Inv. Cient. 2005, 8, 3–16.spa
dcterms.referencesRuiz-Bolivar, Z.; Neuque-Rico, M.C.; Poutou-Piñales, R.A.; Carrascal-Camacho, A.K.; Máttar-Velilla, S. Antimicrobial susceptibility of L. monocytogenes food-isolates from different cities of Colombia. Foodborne. Path Dis. 2011, 8, 913–919.spa
dcterms.referencesAllen, K.J.; Wałecka-Zacharska, E.; Chen, J.C.; Kosek-Paszkowska, K.; Devlieghere, F.; Van Meervenne, E.; Osek, J.; Wieczorek, K.; Bania, J. Listeria monocytogenes—An examination of food chain factors potentially contributing to antimicrobial resistance. Food Microbiol. 2016, 54, 178–189.spa
dcterms.referencesTenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Infect. Control. 2006, 34, s3–s10.spa
dcterms.referencesMorejón García, M. Betalactamasas de espectro extendido. Rev. Cubana. Med. 2013, 52, 272–280.spa
dcterms.referencesSanseverino, I.; Navarro Cuenca, A.; Loos, R.; Marinov, D.; Lettieri, T. State of the Art on the Contribution of Water to Antimicrobial Resistance, EUR 29592; Publications Office of the European Union: Luxembourg, 2018; 110p, ISBN 978-92-79-98478-5.spa
dcterms.referencesGrohmann, E.; Muth, G.; Espinosa, M. Conjugative plasmid transfer in Gram-positive bacteria. Microbiol. Mol. Biol. Rev. 2003, 67, 277–301.spa
dcterms.referencesPoutou, R.A.; Mattar, S. Genética Molecular Bacteriana. In Bacteriología Clínica: Estudio Etiológico de las Enfermedades Infecciosas de Origen Bacteriano; Editorial: Universidad de Córdoba Vicerrectoría de Investigación y Extensiones; Asociación Colombiana de Infectología (ACIN): Córdoba, Spain, 2002.spa
dcterms.referencesArutyunov, D.; Frost, L.S. F conjugation: Back to the beginning. Plasmid 2013, 70, 18–32.spa
dcterms.referencesKohler, V.; Keller, W.; Grohmann, E. Regulation of Gram-Positive Conjugation. Front. Microbiol. 2019, 10, 1134.spa
dcterms.referencesLuo, Y.; Xu, L.; Rysz, M.; Wang, Y.; Zhang, H.; Alvarez, P.J. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environ. Sci. Technol. 2011, 45, 1827–1833.spa
dcterms.referencesRamírez, G.D.; Vélez, G.; Rondón, I.S. Determinación de residuos de antibióticos y tiempo de retiro en leche proveniente del municipio de Cartago (Valle del Cauca). Rev. Col. Cienc. Anim. 2012, 5, 25–31.spa
dcterms.referencesXu, D.; Xiao, Y.; Pan, H.; Mei, Y. Toxic effects of tetracycline and its degradation products on freshwater green algae. Ecotoxicol. Environ. Saf. 2019, 174, 43–47.spa
dcterms.referencesSong, Y.; Han, Z.; Song, K.; Zhen, T. Antibiotic Consumption Trends in China: Evidence From Six-Year Surveillance Sales Records in Shandong Province. Front. Pharmacol. 2020, 11, 491.spa
dcterms.referencesAnh, H.Q.; Le, T.P.Q.; Da Le, N.; Lu, X.X.; Duong, T.T.; Garnier, J.; Rochelle-Newall, E.; Zhang, S.; Oh, N.H.; Oeurng, C.; et al. Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives. Sci. Total Environ. 2021, 764, 142865.spa
dcterms.referencesCenters for Disease Control and Prevention (Ed.) Antibiotic Use in the United States, 2021 Update: Progress and Opportunities; US Department of Health and Human Services: Atlanta, GA, USA, 2021; 26p.spa
dcterms.referencesInstituto Nacional de Salud (INS). Consumo de Antibióticos en el Ambito Hospitalario, Colombia, 2017; Instituto Nacional de Salud (INS): Singapore, 2017; 16p.spa
dcterms.referencesPallares, C.J.; Martínez, E. Implementación de un programa de uso regulado de antibióticos en 2 unidades de cuidado intensivo medico-quirúrgico en un hospital universitario de tercer nivel en Colombia. Infection 2012, 16, 192–198.spa
dcterms.referencesVillalobos, A.P.; Barrero, L.I.; Rivera, S.M.; Ovalle, M.V.; Valera, D. Vigilancia de infecciones asociadas a la atención en salud, resistencia bacteriana y consumo de antibióticos en hospitales de alta complejidad, Colombia, 2011. Biomédica 2013, 34, 67.spa
dcterms.referencesDiwan, V.; Tamhankar, A.J.; Khandal, R.K.; Sen, S.; Aggarwal, M.; Marothi, Y.; Iyer, R.V.; Sundblad-Tonderski, K.; StålsbyLundborg, C. Aesneatrcihb airtoiclteics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health 2010, 10, 414.spa
dcterms.referencesLacorte, S.; Gomez-Canela, C.; Calas-Blanchard, C. Pharmaceutical residues in senior residences wastewaters: High loads, emerging risks. Molecules 2021, 26, 5047.spa
dcterms.referencesLacorte, S.; Luis, S.; Gomez-Canela, C.; Sala-Comorera, T.; Courtier, A.; Roig, B.; Oliveira-Brett, A.M.; Joannis-Cassan, C.; Aragones, J.I.; Poggio, L.; et al. Pharmaceuticals released from senior residences: Occurrence and risk evaluation. Environ. Sci. Pollut. Res. 2018, 25, 6095–6106.spa
dcterms.referencesKummerer, K. Significance of antibiotics in the environment. J. Antimicrob. Chemother. 2003, 52, 5–7.spa
dcterms.referencesLarsson, D.G. Antibiotics in the environment. Ups. J. Med. Sci. 2014, 119, 108–112.spa
dcterms.referencesLi, S.; Shi, W.; Li, H.; Xu, N.; Zhang, R.; Chen, X.; Sun, W.; Wen, D.; He, S.; Pan, J.; et al. Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River estuary, south China. Sci. Total Environ. 2018, 636, 1009–1019.spa
dcterms.referencesYang, S.; Carlson, K.H. Solid-phase extraction-high-performance liquid chromatography-ion trap mass spectrometry for analysis of trace concentrations of macrolide antibiotics in natural and waste water matrices. J. Chromatogr. A 2004, 1038, 141–155.spa
dcterms.referencesLien, L.T.; Hoa, N.Q.; Chuc, N.T.; Thoa, N.T.; Phuc, H.D.; Diwan, V.; Dat, N.T.; Tamhankar, A.J.; Lundborg, C.S. Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use-A one year study from Vietnam. Int. J. Environ. Res. Public Health 2016, 13, 588.spa
dcterms.referencesSerna-Galvis, E.; Martínez-Mena, Y.L.; Porras, J.; Torres-Palma, R.A. Antibióticos de alto consumo en Colombia, excreción en orina y presencia en aguas residuales—Una revisión bibliográfica. Ing. Compet. 2021, 24, e30711267.spa
dcterms.referencesDeak, D.; Outterson, K.; Powers, J.H.; Kesselheim, A.S. Progress in the Fight Against Multidrug-Resistant Bacteria? A Review of U.S. Food and Drug Administration-Approved Antibiotics, 2010–2015. Ann. Intern. Med. 2016, 165, 363–372.spa
dcterms.referencesAndrei, S.; Droc, G.; Stefan, G. FDA approved antibacterial drugs: 2018–2019. Discoveries 2019, 7, e102.spa
dcterms.referencesMalenfant, J.H.; Brewer, T.F. Rifampicin Mono-Resistant Tuberculosis-A Review of an Uncommon But Growing Challenge for Global Tuberculosis Control. Open Forum. Infect. Dis. 2021, 8, ofab018.spa
dcterms.referencesPan, M.; Chu, L.M. Adsorption and degradation of five selected antibiotics in agricultural soil. Sci. Total Environ. 2016, 545–546, 48–56.spa
dcterms.referencesCycon, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the Soil Environment-Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 2019, 10, 338.spa
dcterms.referencesEzzariai, A.; Hafidi, M.; Khadra, A.; Aemig, Q.; El Fels, L.; Barret, M.; Merlina, G.; Patureau, D.; Pinelli, E. Human and veterinary antibiotics during composting of sludge or manure: Global perspectives on persistence, degradation, and resistance genes. J. Hazard. Mater. 2018, 359, 465–481.spa
dcterms.referencesWu, S.; Hu, Y.H. A comprehensive review on catalysts for electrocatalytic and photoelectrocatalytic degradation of antibiotics. Chem. Eng. J. 2021, 409, 127739.spa
dcterms.referencesHomem, V.; Santos, L. Degradation and removal methods of antibiotics from aqueous matrices—A review. J. Env. Manag. 2011, 92, 2304–2347.spa
dcterms.referencesAbdurahman, M.H.; Abdullah, A.Z.; Shoparwe, N.F. A comprehensive review on sonocatalytic, photocatalytic, and sonophotocatalytic processes for the degradation of antibiotics in water: Synergistic mechanism and degradation pathway. Chem. Eng. J. 2021, 413, 127412.spa
dcterms.referencesLoftin, K.A.; Adams, C.D.; Meyer, M.T.; Surampalli, R. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics. J. Environ. Qual. 2008, 37, 378–386.spa
dcterms.referencesCalcio Gaudino, E.; Canova, E.; Liu, P.; Wu, Z.; Cravotto, G. Degradation of Antibiotics in Wastewater: New Advances in Cavitational Treatments. Molecules 2021, 26, 617.spa
dcterms.referencesZeghioud, H.; Kamagate, M.; Coulibaly, L.S.; Rtimi, S.; Assadi, A.A. Photocatalytic degradation of binary and ternary mixtures of antibiotics: Reactive species investigation in pilot scale. Chem. Eng. Res. Des. 2019, 144, 300–309.spa
dcterms.referencesDorival-Garcia, N.; Zafra-Gomez, A.; Navalon, A.; Gonzalez-Lopez, J.; Hontoria, E.; Vilchez, J.L. Removal and degradation characteristics of quinolone antibiotics in laboratory-scale activated sludge reactors under aerobic, nitrifying and anoxic conditions. J. Environ. Manag. 2013, 120, 75–83.spa
dcterms.referencesLin, K.; Gan, J. Sorption and degradation of wastewater-associated non-steroidal anti-inflammatory drugs and antibiotics in soils. Chemosphere 2011, 83, 240–246.spa
dcterms.referencesJi, Y.; Ferronato, C.; Salvador, A.; Yang, X.; Chovelon, J.M. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics. Sci. Total Environ. 2014, 472, 800–808.spa
dcterms.referencesJiang, M.; Wang, L.; Ji, R. Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment. Chemosphere 2010, 80, 1399–1405.spa
dcterms.referencesBraschi, I.; Blasioli, S.; Fellet, C.; Lorenzini, R.; Garelli, A.; Pori, M.; Giacomini, D. Persistence and degradation of new beta-lactam antibiotics in the soil and water environment. Chemosphere 2013, 93, 152–159.spa
dcterms.referencesAhmad, F.; Zhu, D.; Sun, J. Environmental fate of tetracycline antibiotics: Degradation pathway mechanisms, challenges, and perspectives. Environ. Sci. Eur. 2021, 33, 64.spa
dcterms.referencesRuan, Y.; Kumar Awasthi, M.; Cai, L.; Lu, H.; Xu, X.; Li, W. Simultaneous aerobic denitrification and antibiotics degradation by strain Marinobacter hydrocarbonoclasticus RAD-2. Bioresour. Technol. 2020, 313, 123609.spa
dcterms.referencesZhang, Y.; Xu, J.; Zhong, Z.; Guo, C.; Li, L.; He, Y.; Fan, W.; Chen, Y. Degradation of sulfonamides antibiotics in lake water and sediment. Environ. Sci. Pollut. Rese. Int. 2013, 20, 2372–2380.spa
dcterms.referencesNnenna, F.-P.; Lekiah, P.; Obemeata, O. Degradation of antibiotics by bacteria and fungi from the aquatic environment. J. Toxicol. Environ. Health Sci. 2011, 30, 275–285.spa
dcterms.referencesAlexy, R.; Kumpel, T.; Kummerer, K. Assessment of degradation of 18 antibiotics in the Closed Bottle Test. Chemosphere 2004, 57, 505–512.spa
dcterms.referencesHo, Y.B.; Zakaria, M.P.; Latif, P.A.; Saari, N. Degradation of veterinary antibiotics and hormone during broiler manure composting. Bioresour. Technol. 2013, 131, 476–484.spa
dcterms.referencesJi, Y.; Shi, Y.; Dong, W.; Wen, X.; Jiang, M.; Lu, J. Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution. Chem. Eng. J. 2016, 298, 225–233.spa
dcterms.referencesYin, R.; Guo, W.; Wang, H.; Du, J.; Zhou, X.; Wu, Q.; Zheng, H.; Chang, J.; Ren, N. Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone: Direct oxidation and nonradical mechanisms. Chem. Eng. J. 2018, 334, 2539–2546.spa
dcterms.referencesLange, F.; Cornelissen, S.; Kubac, D.; Sein, M.M.; von Sonntag, J.; Hannich, C.B.; Golloch, A.; Heipieper, H.J.; Moder, M.; von Sonntag, C. Degradation of macrolide antibiotics by ozone: A mechanistic case study with clarithromycin. Chemosphere 2006, 65, 17–23.spa
dcterms.referencesPelalak, R.; Alizadeh, R.; Ghareshabani, E.; Heidari, Z. Degradation of sulfonamide antibiotics using ozone-based advanced oxidation process: Experimental, modeling, transformation mechanism and DFT study. Sci. Total Environ. 2020, 734, 139446.spa
dcterms.referencesWu, X.; Zhao, W.; Huang, Y.; Zhang, G. A mechanistic study of amorphous CoSx cages as advanced oxidation catalysts for excellent peroxymonosulfate activation towards antibiotics degradation. Chem. Eng. J. 2020, 381, 122768.spa
dcterms.referencesGuo, W.; Su, S.; Yi, C.; Ma, Z. Degradation of antibiotics amoxicillin by Co3O4-catalyzed peroxymonosulfate system. Environ. Prog. Sustain. Energ. 2013, 32, 193–197.spa
dcterms.referencesCalvete, M.J.F.; Piccirillo, G.; Vinagreiro, C.S.; Pereira, M.M. Hybrid materials for heterogeneous photocatalytic degradation of antibiotics. Coordin. Chem. Rev. 2019, 395, 63–85.spa
dcterms.referencesRokesh, K.; Sakar, M.; Do, T.O. Emerging Hybrid Nanocomposite Photocatalysts for the Degradation of Antibiotics: Insights into Their Designs and Mechanisms. Nanomaterials 2021, 11, 572.spa
dcterms.referencesWang, J.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total Environ. 2020, 701, 135023.spa
dcterms.referencesChen, D.; Li, B.; Pu, Q.; Chen, X.; Wen, G.; Li, Z. Preparation of Ag-AgVO3/g-C3N4 composite photo-catalyst and degradation characteristics of antibiotics. J. Hazard. Mater. 2019, 373, 303–312.spa
dcterms.referencesWang, J.; Zhuan, R.; Chu, L. The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview. Sci. Total Environ. 2019, 646, 1385–1397.spa
dcterms.referencesHe, X.; Mezyk, S.P.; Michael, I.; Fatta-Kassinos, D.; Dionysiou, D.D. Degradation kinetics and mechanism of beta-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254nm irradiation. J. Hazard. Mater. 2014, 279, 375–383.spa
dcterms.referencesJeong, J.; Song, W.; Cooper, W.J.; Jung, J.; Greaves, J. Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere 2010, 78, 533–540.spa
dcterms.referencesSaidulu, D.; Gupta, B.; Gupta, A.K.; Ghosal, P.S. A review on occurrences, eco-toxic effects, and remediation of emerging contaminants from wastewater: Special emphasis on biological treatment based hybrid systems. J. Environ. Chem. Eng. 2021, 9, 105282.spa
dcterms.referencesLi, D.; Shi, W. Recent developments in visible-light photocatalytic degradation of antibiotics. Chin. J. Catal. 2016, 37, 792–799.spa
dcterms.referencesElmolla, E.S.; Chaudhuri, M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 2010, 252, 46–52.spa
dcterms.referencesElmolla, E.S.; Chaudhuri, M. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. J. Hazard. Mater. 2010, 173, 445–449.spa
dcterms.referencesZheng, X.; Xu, S.; Wang, Y.; Sun, X.; Gao, Y.; Gao, B. Enhanced degradation of ciprofloxacin by graphitized mesoporous carbon (GMC)-TiO2 nanocomposite: Strong synergy of adsorption-photocatalysis and antibiotics degradation mechanism. J. Colloid. Interface Sci. 2018, 527, 202–213.spa
dcterms.referencesAbellán, M.N.; Giménez, J.; Esplugas, S. Photocatalytic degradation of antibiotics: The case of sulfamethoxazole and trimethoprim. Catal. Today 2009, 144, 131–136.spa
dcterms.referencesDing, J.; Dai, Z.; Qin, F.; Zhao, H.; Zhao, S.; Chen, R. Z-scheme BiO1-xBr/Bi2O2CO3 photocatalyst with rich oxygen vacancy as electron mediator for highly efficient degradation of antibiotics. Appl. Catal. B Environ. 2017, 205, 281–291.spa
dcterms.referencesWang, K.; Li, Y.; Zhang, G.; Li, J.; Wu, X. 0D Bi nanodots/2D Bi3NbO7 nanosheets heterojunctions for efficient visible light photocatalytic degradation of antibiotics: Enhanced molecular oxygen activation and mechanism insight. Appl. Catal. B Environ. 2019, 240, 39–49.spa
dcterms.referencesYan, W.; Yan, L.; Jing, C. Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics: Structure, photoactivity and degradation mechanisms. Appl. Catal. B Environ. 2019, 244, 475–485.spa
dcterms.referencesWang, A.; Zheng, Z.; Wang, H.; Chen, Y.; Luo, C.; Liang, D.; Hu, B.; Qiu, R.; Yan, K. 3D hierarchical H2-reduced Mn-doped CeO2 microflowers assembled from nanotubes as a high-performance Fenton-like photocatalyst for tetracycline antibiotics degradation. Appl. Catal. B Environ. 2020, 277, 119171.spa
dcterms.referencesShi, W.; Li, M.; Huang, X.; Ren, H.; Guo, F.; Tang, Y.; Lu, C. Construction of CuBi2O4/Bi2MoO6 p-n heterojunction with nanosheets-on-microrods structure for improved photocatalytic activity towards broad-spectrum antibiotics degradation. Chem. Eng. J. 2020, 394, 125009.spa
dcterms.referencesLi, S.; Wang, C.; Liu, Y.; Xue, B.; Jiang, W.; Liu, Y.; Mo, L.; Chen, X. Photocatalytic degradation of antibiotics using a novel Ag/Ag2S/Bi2MoO6 plasmonic p-n heterojunction photocatalyst: Mineralization activity, degradation pathways and boosted charge separation mechanism. Chem. Eng. J. 2021, 415, 128991.spa
dcterms.referencesChe, H.; Che, G.; Jiang, E.; Liu, C.; Dong, H.; Li, C. A novel Z-Scheme CdS/Bi3O4Cl heterostructure for photocatalytic degradation of antibiotics: Mineralization activity, degradation pathways and mechanism insight. J. Taiwan Inst. Chem. Eng. 2018, 91, 224–234.spa
dcterms.referencesLi, H.; Li, T.; He, S.; Zhou, J.; Wang, T.; Zhu, L. Efficient degradation of antibiotics by non-thermal discharge plasma: Highlight the impacts of molecular structures and degradation pathways. Chem. Eng. J. 2020, 395, 125091.spa
dcterms.referencesMagureanu, M.; Piroi, D.; Mandache, N.B.; David, V.; Medvedovici, A.; Bradu, C.; Parvulescu, V.I. Degradation of antibiotics in water by non-thermal plasma treatment. Water Res. 2011, 45, 3407–3416.spa
dcterms.referencesKim, K.-S.; Yang, C.-S.; Mok, Y.S. Degradation of veterinary antibiotics by dielectric barrier discharge plasma. Chem. Eng. J. 2013, 219, 19–27.spa
dcterms.referencesSarangapani, C.; Ziuzina, D.; Behan, P.; Boehm, D.; Gilmore, B.F.; Cullen, P.J.; Bourke, P. Degradation kinetics of cold plasmatreated antibiotics and their antimicrobial activity. Sci. Rep. 2019, 9, 3955.spa
dcterms.referencesKong, D.; Liang, B.; Yun, H.; Cheng, H.; Ma, J.; Cui, M.; Wang, A.; Ren, N. Cathodic degradation of antibiotics: Characterization and pathway analysis. Water Res. 2015, 72, 281–292.spa
dcterms.referencesLin, H.; Zhang, J.; Chen, H.; Wang, J.; Sun, W.; Zhang, X.; Yang, Y.; Wang, Q.; Ma, J. Effect of temperature on sulfonamide antibiotics degradation, and on antibiotic resistance determinants and hosts in animal manures. Sci. Total Environ. 2017, 607–608, 725–732.spa
dcterms.referencesChakma, S.; Dikshit, P.K.; Galodiya, M.N.; Giri, A.S.; Moholkar, V.S. The role of ultrasound in enzymatic degradation mechanism. J. Taiwan Inst. Chem. Eng. 2020, 107, 54–71.spa
dcterms.referencesAdewuyi, Y.G. Sonochemistry in environmental remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water. Environ. Sci. Technol. 2005, 39, 8557–8570.spa
dcterms.referencesDe Bel, E.; Dewulf, J.; Witte, B.D.; Van Langenhove, H.; Janssen, C. Influence of pH on the sonolysis of ciprofloxacin: Biodegradability, ecotoxicity and antibiotic activity of its degradation products. Chemosphere 2009, 77, 291–295.spa
dcterms.referencesLiu, P.; Wu, Z.; Abramova, A.V.; Cravotto, G. Sonochemical processes for the degradation of antibiotics in aqueous solutions: A review. Ultrason. Sonochem. 2021, 74, 105566.spa
dcterms.referencesLi, L.; Wei, D.; Wei, G.; Du, Y. Oxidation of cefazolin by potassium permanganate: Transformation products and plausible pathways. Chemosphere 2016, 149, 279–285.spa
dcterms.referencesKonstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations. Appl. Catal. B Environ. 2004, 49, 1–14.spa
dcterms.referencesFan, Y.; Zhou, Z.; Feng, Y.; Zhou, Y.; Wen, L.; Shih, K. Degradation mechanisms of ofloxacin and cefazolin using peroxymonosulfate activated by reduced graphene oxide-CoFe2O4 composites. Chem. Eng. J. 2020, 383, 123056.spa
dcterms.referencesGhasemi, M.; Khataee, A.; Gholami, P.; Soltani, R.D.C.; Hassani, A.; Orooji, Y. In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. J. Environ. Manag. 2020, 267, 110629.spa
dcterms.referencesGurkan, Y.Y.; Turkten, N.; Hatipoglu, A.; Cinar, Z. Photocatalytic degradation of cefazolin over N-doped TiO2 under UV and sunlight irradiation: Prediction of the reaction paths via conceptual DFT. Chem. Eng. J. 2012, 184, 113–124.spa
dcterms.referencesChen, Y.; Tian, H.; Zhu, W.; Zhang, X.; Li, R.; Chen, C.; Huang, Y. l-Cysteine directing synthesis of BiOBr nanosheets for efficient cefazolin photodegradation: The pivotal role of thiol. J. Hazard. Mater. 2021, 414, 125544.spa
dcterms.referencesGholami, P.; Dinpazhoh, L.; Khataee, A.; Hassani, A.; Bhatnagar, A. Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium. J. Hazard. Mater. 2020, 381, 120742.spa
dcterms.referencesLiu, J.; Li, Z.; Wang, M.; Jin, C.; Kang, J.; Tang, Y.; Li, S. Eu2O3/Co3O4 nanosheets for levofloxacin removal via peroxymonosulfate activation: Performance, mechanism and degradation pathway. Separat. Pur. Technol. 2021, 274, 118666.spa
dcterms.referencesHe, Z.; Zheng, W.; Li, M.; Liu, W.; Zhang, Y.; Wang, Y. Fe2P/biocarbon composite derived from a phosphorus-containing biomass for levofloxacin removal through peroxymonosulfate activation. Chem. Eng. J. 2022, 427, 130928.spa
dcterms.referencesXu, K.; Ben, W.; Ling, W.; Zhang, Y.; Qu, J.; Qiang, Z. Impact of humic acid on the degradation of levofloxacin by aqueous permanganate: Kinetics and mechanism. Water Res. 2017, 123, 67–74.spa
dcterms.referencesZhou, Y.; Gao, Y.; Jiang, J.; Shen, Y.M.; Pang, S.Y.; Song, Y.; Guo, Q. A comparison study of levofloxacin degradation by peroxymonosulfate and permanganate: Kinetics, products and effect of quinone group. J. Hazard. Mater. 2021, 403, 123834.spa
dcterms.referencesLiang, J.; Hou, Y.; Zhu, H.; Xiong, J.; Huang, W.; Yu, Z.; Wang, S. Levofloxacin degradation performance and mechanism in the novel electro-Fenton system constructed with vanadium oxide electrodes under neutral pH. Chem. Eng. J. 2022, 433, 133574.spa
dcterms.referencesZhang, Y.; Hua, S.; Sun, X.; Liu, Z.; Dang, Y.; Zhang, L.; Zhou, Y. A novel electrochemical cathode based on sea urchin-like NiO/Co3O4 composite inducing efficient Fenton-like process for levofloxacin degradation. Appl. Catal. A 2021, 628, 118403.spa
dcterms.referencesWang, A.; Chen, Z.; Zheng, Z.; Xu, H.; Wang, H.; Hu, K.; Yan, K. Remarkably enhanced sulfate radical-based photo-Fenton-like degradation of levofloxacin using the reduced mesoporous MnO@MnOx microspheres. Chem. Eng. J. 2020, 379, 122340.spa
dcterms.referencesGong, Y.; Li, J.; Zhang, Y.; Zhang, M.; Tian, X.; Wang, A. Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode. J. Hazard. Mater. 2016, 304, 320–328.spa
dcterms.referencesHu, Z.; Ge, M.; Guo, C. Efficient removal of levofloxacin from different water matrices via simultaneous adsorption and photocatalysis using a magnetic Ag3PO4/rGO/CoFe2O4 catalyst. Chemosphere 2021, 268, 128834.spa
dcterms.referencesRong, F.; Xue, Y.; Tang, W.; Lu, Q.; Wei, M.; Guo, E.; Pang, Y. Visible-light-active 1D Ag-CoWO4/CdWO4 plasmonic photocatalysts boosting levofloxacin conversion. J. Taiwan Inst. Chem. Eng. 2022, 133, 104267.spa
dcterms.referencesWei, H.; Hu, D.; Su, J.; Li, K. Intensification of levofloxacin sono-degradation in a US/H2O2 system with Fe3O4 magnetic nanoparticles. Chin. J. Chem. Eng. 2015, 23, 296–302.spa
dcterms.referencesConde-Cid, M.; Fernandez-Calvino, D.; Novoa-Munoz, J.C.; Arias-Estevez, M.; Diaz-Ravina, M.; Fernandez-Sanjurjo, M.J.; Nunez-Delgado, A.; Alvarez-Rodriguez, E. Biotic and abiotic dissipation of tetracyclines using simulated sunlight and in the dark. Sci. Total Environ. 2018, 635, 1520–1529.spa
dcterms.referencesNorzaee, S.; Taghavi, M.; Djahed, B.; Kord Mostafapour, F. Degradation of Penicillin G by heat activated persulfate in aqueous solution. J. Environ. Manag. 2018, 215, 316–323.spa
dcterms.referencesZhu, L.; Santiago-Schubel, B.; Xiao, H.; Hollert, H.; Kueppers, S. Electrochemical oxidation of fluoroquinolone antibiotics: Mechanism, residual antibacterial activity and toxicity change. Water Res. 2016, 102, 52–62.spa
dcterms.referencesJiang, Y.; Ran, J.; Mao, K.; Yang, X.; Zhong, L.; Yang, C.; Feng, X.; Zhang, H. Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments. Ecotoxicol. Environ. Saf. 2022, 236, 113464.spa
dcterms.referencesYang, Y.; Kou, L.; Fan, Q.; Jiang, K.; Wang, J. Simultaneous recovery of phosphate and degradation of antibiotics by waste sludge-derived biochar. Chemosphere 2022, 291, 132832.spa
dcterms.referencesAl-Jubouri, S.M.; Al-Jendeel, H.A.; Rashid, S.A.; Al-Batty, S. Antibiotics adsorption from contaminated water by composites of ZSM-5 zeolite nanocrystals coated carbon. J. Water. Proc. Eng. 2022, 47, 102745.spa
dcterms.referencesBekkali, C.E.; Bouyarmane, H.; Karbane, M.E.; Masse, S.; Saoiabi, A.; Coradin, T.; Laghzizil, A. Zinc oxide-hydroxyapatite nanocomposite photocatalysts for the degradation of ciprofloxacin and ofloxacin antibiotics. Colloids. Surf. A Physicochem. Eng. Aspects. 2018, 539, 364–370.spa
dcterms.referencesFelis, E.; Buta-Hubeny, M.; Zielinski, W.; Hubeny, J.; Harnisz, M.; Bajkacz, S.; Korzeniewska, E. Solar-light driven photodegradation of antimicrobials, their transformation by-products and antibiotic resistance determinants in treated wastewater. Sci. Total Environ. 2022, 836, 155447.spa
dcterms.referencesZhang, W.; Liu, Y.; Li, C. Photocatalytic degradation of ofloxacin on Gd2Ti2O7 supported on quartz spheres. J. Phys. Chem. Solids. 2018, 118, 144–149.spa
dcterms.referencesPal, S.; Ahamed, Z.; Pal, P. Removal of antibiotics and pharmaceutically active compounds from water Environment: Experiments towards industrial scale up. Separat. Purif. Technol. 2022, 295, 121249.spa
dcterms.referencesReis, A.C.; Kolvenbach, B.A.; Nunes, O.C.; Corvini, P.F.X. Biodegradation of antibiotics: The new resistance determinants—Part I. N Biotechnol. 2020, 54, 34–51.spa
dcterms.referencesChaturvedi, P.; Giri, B.S.; Shukla, P.; Gupta, P. Recent advancement in remediation of synthetic organic antibiotics from environmental matrices: Challenges and perspective. Bioresour. Technol. 2021, 319, 124161.spa
dcterms.referencesOberoi, A.S.; Jia, Y.; Zhang, H.; Khanal, S.K.; Lu, H. Insights into the Fate and Removal of Antibiotics in Engineered Biological Treatment Systems: A Critical Review. Environ. Sci. Technol. 2019, 53, 7234–7264.spa
dcterms.referencesLangbehn, R.K.; Michels, C.; Soares, H.M. Antibiotics in wastewater: From its occurrence to the biological removal by environmentally conscious technologies. Environ. Pollut. 2021, 275, 116603.spa
dcterms.referencesZhou, W.; Zhang, W.; Cai, Y. Laccase immobilization for water purification: A comprehensive review. Chem. Eng. J. 2021, 403, 126272.spa
dcterms.referencesBilal, M.; Ashraf, S.S.; Barcelo, D.; Iqbal, H.M.N. Biocatalytic degradation/redefining "removal" fate of pharmaceutically active compounds and antibiotics in the aquatic environment. Sci. Total Environ. 2019, 691, 1190–1211.spa
dcterms.referencesPark, H.; Choung, Y.-K. Degradation of Antibiotics (Tetracycline, Sulfathiazole, Ampicillin) Using Enzymes of Glutathion S-Transferase. Human. Ecol. Risk Assess. Int. J. 2007, 13, 1147–1155.spa
dcterms.referencesWen, X.; Jia, Y.; Li, J. Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium. J. Hazard. Mater. 2010, 177, 924–928.spa
dcterms.referencesWen, X.; Zeng, Z.; Du, C.; Huang, D.; Zeng, G.; Xiao, R.; Lai, C.; Xu, P.; Zhang, C.; Wan, J.; et al. Immobilized laccase on bentonite-derived mesoporous materials for removal of tetracycline. Chemosphere 2019, 222, 865–871.spa
dcterms.referencesTian, Q.; Dou, X.; Huang, L.; Wang, L.; Meng, D.; Zhai, L.; Shen, Y.; You, C.; Guan, Z.; Liao, X. Characterization of a robust cold-adapted and thermostable laccase from Pycnoporus sp. SYBC-L10 with a strong ability for the degradation of tetracycline and oxytetracycline by laccase-mediated oxidation. J. Hazard. Mater. 2020, 382, 121084.spa
dcterms.referencesCopete-Pertuz, L.S.; Plácido, J.; Serna-Galvis, E.A.; Torres-Palma, R.A.; Mora, A. Elimination of Isoxazolyl-Penicillins antibiotics in waters by the ligninolytic native Colombian strain Leptosphaerulina sp. considerations on biodegradation process and antimicrobial activity removal. Sci. Total Environ. 2018, 630, 1195–1204.spa
dcterms.referencesSun, X.; Leng, Y.; Wan, D.; Chang, F.; Huang, Y.; Li, Z.; Xiong, W.; Wang, J. Transformation of Tetracycline by Manganese Peroxidase from Phanerochaete chrysosporium. Molecules 2021, 26.spa
dcterms.referencesWeng, S.S.; Ku, K.L.; Lai, H.T. The implication of mediators for enhancement of laccase oxidation of sulfonamide antibiotics. Bioresour. Technol. 2012, 113, 259–264.spa
dcterms.referencesHakulinen, N.; Rouvinen, J. Three-dimensional structures of laccases. CMLS 2015, 72, 857–868.spa
dcterms.referencesDwivedi, U.N.; Singh, P.; Pandey, V.P.; Kumar, A. Structure–function relationship among bacterial, fungal and plant laccases. J. Mol. Catal. B Enz. 2011, 68, 117–128.spa
dcterms.referencesRivera-Hoyos, C.M.; Morales-Álvarez, E.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; Rodríguez-Vázquez, R.; Delgado-Boada, J.M. Fungal laccases. Fung. Biol. Rev. 2013, 27, 67–82.spa
dcterms.referencesShraddha; Shekher, R.; Sehgal, S.; Kamthania, M.; Kumar, A. Laccase:microbial sources, production, purification, and potential biotechnological applications. Enz. Res. 2011, 2011, 217861.spa
dcterms.referencesChristopher, L.P.; Yao, B.; Ji, Y. Lignin biodegradation with laccase-mediator systems. Front. Ener. Res. 2014, 2, 12.spa
dcterms.referencesFalade, A.O.; Nwodo, U.U.; Iweriebor, B.C.; Green, E.; Mabinya, L.V.; Okoh, A.I. Lignin peroxidase functionalities and prospective applications. Microbiol. Open 2017, 6, e00394.spa
dcterms.referencesWesenberg, D.; Kyriakides, I.; Agathos, S.N. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 2003, 22, 161–187.spa
dcterms.referencesKong, W.; Fu, X.; Wang, L.; Alhujaily, A.; Zhang, J.; Ma, F.; Zhang, X.; Yu, H. A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. Biotechnol. Biofuels. 2017, 10, 218.spa
dcterms.referencesRodríguez Couto, S.; Toca Herrera, J.L. Industrial and biotechnological applications of laccases: A review. Biotechnol. Adv. 2006, 24, 500–513.spa
dcterms.referencesForgacs, E.; Cserháti, T.; Oros, G. Removal of synthetic dyes from wastewaters: A review. Environ. Int. 2004, 30, 953–971.spa
dcterms.referencesMajeau, J.-A.; Brar, S.K.; Tyagi, R.D. Laccases for removal of recalcitrant and emerging pollutants. Biores. Technol. 2010, 101, 2331–2350.spa
dcterms.referencesArdila-Leal, L.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; Quevedo-Hidalgo, B.E. A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Molecules 2021, 26, 3813.spa
dcterms.referencesYang, J.; Li, W.; Ng, T.B.; Deng, X.; Lin, J.; Ye, X. Laccases: Production, expression regulation, and applications in pharmaceutical biodegradation. Front. Microbiol. 2017, 8, 832.spa
dcterms.referencesNavada, K.K.; Kulal, A. Enzymatic degradation of chloramphenicol by laccase from Trametes hirsuta and comparison among mediators. Int. Biodet. Biodegrad. 2019, 138, 63–69.spa
dcterms.referencesNajafabadipour, N.; Mojtabavi, S.; Jafari-Nodoushan, H.; Samadi, N.; Faramarzi, M.A. High efficiency of osmotically stable laccase for biotransformation and micro-detoxification of levofloxacin in the urea-containing solution: Catalytic performance and mechanism. Colloids. Surf. B Biointerf. 2021, 207, 112022.spa
dcterms.referencesKelbert, M.; Pereira, C.S.; Daronch, N.A.; Cesca, K.; Michels, C.; de Oliveira, D.; Soares, H.M. Laccase as an efficacious approach to remove anticancer drugs: A study of doxorubicin degradation, kinetic parameters, and toxicity assessment. J. Hazard. Mater. 2021, 409, 124520.spa
dcterms.referencesRivera-Hoyos, C.M.; Morales-Álvarez, E.D.; Poveda-Cuevas, S.A.; Reyes-Guzmán, E.A.; Poutou-Piñales, R.A.; Reyes-Montaño, E.A.; Pedroza-Rodríguez, A.M.; Rodríguez-Vázquez, R.; Cardozo-Bernal, Á.M. Computational analysis and low-scale constitutive expression of laccases synthetic genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris. PLoS ONE 2015, 10, e0116524.spa
dcterms.referencesSáenz-Suárez, H.; Chávez-Zobbel, A.; Lareo, L.R.; Oribio-Quinto, C.; Martínez-Mendoza, J. Predicción computacional de estructura terciaria de las proteínas humanas Hsp27, aB-cristalina y HspB8. Univ. Sci. 2011, 16, 15–28.spa
dcterms.referencesZárate-Bonilla, L.J.; del Portillo, P.; Sáenz-Suárez, H.; Janneth, G.-S.; Barreto-Sampaio, G.E.; Poutou-Piñales, R.A.; Felipe Rey, A.; Rey, J.G. Computational modeling and preliminary iroN, fepA, cirA gene expression in Salmonella Enteritidis under iron deficiency induced conditions. Poult. Sci. 2014, 93, 221–230.spa
dcterms.referencesSáenz-Suárez, H.; Rivera-Hoyos, C.; Morales-Álvarez, E.; Poutou-Piñales, R.; Sáenz-Moreno, J.; Pedroza-Rodríguez, A. Modelación computacional preliminar de la estructura 3D de dos lacasas fúngicas. Salud. Arte. Cuidado. 2014, 7, 5–16.spa
dcterms.referencesSáenz-Suárez, H.; Poutou-Piñales, R.A.; González-Santos, J.; Barreto, G.E.; Prieto-Navarrera, L.P.; Sáenz-Moreno, J.A.; Landázuri, P.; Barrera-Avellaneda, L.A. Prediction of glycation sites: New insights from protein structural analysis. Turk. J. Biol. 2016, 40, 12–25.spa
dcterms.referencesNiño-Gómez, D.C.; Rivera-Hoyos, C.M.; Morales-Álvarez, E.D.; Reyes-Montaño, E.A.; Vargas-Alejo, N.E.; Ramírez-Casallas, I.N.; Erkan Turkmen, K.; Sáenz-Suárez, H.; Sáenz-Moreno, J.A.; Poutou-Piñales, R.A.; et al. “In silico” characterization of 3-phytase A and 3-phytase B from Aspergillus niger. Enz. Res. 2017, 2017, 9746191.spa
dcterms.referencesSáenz, H.; Lareo, L.; Poutou, R.A.; Sosa, C.; Barrera, L.A. Predicción computacional de la estructura terciaria de la iduronato 2-sulfato sulfatasa humana. Biomédica 2007, 27, 7–20.spa
dcterms.referencesArdila-Leal, L.D.; Monterey-Gutiérrez, P.A.; Poutou-Piñales, R.A.; Quevedo-Hidalgo, B.E.; Galindo, J.F.; Pedroza-Rodríguez, A.M. Recombinant laccase rPOXA 1B real-time and accelerated stability studies supported by molecular dynamics. BMC Biotechnol. 2021, 21, 37.spa
dcterms.referencesPagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: A review. Biophys. Rev. 2017, 9, 91–102.spa
dcterms.referencesArdila-Leal, L.D. Producción a escala piloto (10L) y caracterización de un concentrado enzimático de rPOXA 1B para la remoción de colorantes. In Microbiology; Pontificia Universidad Javeriana: Bogotá D.C., Colombia, 2021; p. 361.spa
dcterms.referencesSarkar, S.; Banerjee, A.; Chakraborty, N.; Soren, K.; Chakraborty, P.; Bandopadhyay, R. Structural-functional analyses of textile dye degrading azoreductase, laccase and peroxidase: A comparative in silico study. Elect. J. Biotechnol. 2020, 43, 48–54.spa
dcterms.referencesSingh, A.; Kumari, S.; Pal, T.K. In silico analysis for laccase-mediated bioremediation of the emerging pharmaceutical pollutants. Int. J. Bioautom. 2015, 19, 423–432.spa
dcterms.referencesYue, S.-Y. Distance-constrained molecular docking by simulated annealing. Prot. Eng. 1990, 4, 177–184.spa
dcterms.referencesReva, B.A.; Finkelstein, A.V.; Skolnick, J. What is the probability of a chance prediction of a protein structure with an rmsd of 6 å? Fold Des. 1998, 3, 141–147.spa
dcterms.referencesCárdenas-Moreno, Y.; Espinosa, L.A.; Vieyto, J.C.; González-Durruthy, M.; del Monte-Martinez, A.; Guerra-Rivera, G.; Sánchez López, M.I. Theoretical study on binding interactions of laccase-enzyme from Ganoderma weberianum with multiples ligand substrates with environmental impact. Ann. Prot. Bioinf. 2019, 3, 001–009.spa
dcterms.referencesSutar, R.S.; Rathod, V.K. Ultrasound assisted Laccase catalyzed degradation of Ciprofloxacin hydrochloride. J. Ind. Eng. Chem. 2015, 31, 276–282.spa
dc.contributor.corporatenameMoleculesspa
dc.identifier.doihttps://doi.org/10.3390/molecules27144436
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol. 27 No° 14 [2022]spa
dc.relation.citationendpage44spa
dc.relation.citationissue14[2022]spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume27spa
dc.relation.citesMora-Gamboa, M.P.C.; Rincón-Gamboa, S.M.; Ardila-Leal, L.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; Quevedo-Hidalgo, B.E. Impact of Antibiotics as Waste, Physical, Chemical, and Enzymatical Degradation: Use of Laccases. Molecules 2022, 27, 4436. https:// doi.org/10.3390/molecules27144436
dc.relation.ispartofjournalMoleculesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalantibioticseng
dc.subject.proposallaccaseseng
dc.subject.proposalwastewaterseng
dc.subject.proposalantimicrobial resistanceeng
dc.subject.proposaltreatmenteng
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bcspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2022 by the authors
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 by the authors