Show simple item record

dc.contributor.authorOrjuela Abril, Martha Sofia
dc.contributor.authorFONSECA VIGOYA, MARLEN DEL SOCORRO
dc.contributor.authorPabón León, Jhon
dc.date.accessioned2022-11-18T14:46:51Z
dc.date.available2022-11-18T14:46:51Z
dc.date.issued2022-04-07
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6536
dc.description.abstractThe contact between the piston rings and the cylinder liner is an interface with a strong influence on the tribological behavior and, therefore, directly affects the useful life of the engine components and fuel consumption. Due to this importance, the present investigation carried out an analysis of the effects of dimples and the honing groove in the cylinder liner on the tribological characteristics. A tribological model was developed to study the friction forces, minimum film thickness, and friction coefficient for the present investigation. Similarly, a computational fluid dynamics model was built to determine the dynamic movement of the piston. The validation of the numerical model showed a close similarity with the real behavior of the engine, obtaining an average relative error of 14%. The analysis of the results showed that a 3% increase in dimples’ density leads to a 3.79% increase in the minimum lubricant film and a 2.76% decrease in friction force. Additionally, it was shown that doubling the radius and depth of the dimple produces an increase of 3.86% and 1.91% in the thickness of the lubrication film. The most suitable distribution of the dimples on the surface of the cylinder liner corresponds to a square array. In general, the application of dimples and honing grooves in the cylinder liner are promising alternatives to reduce energy losses and minimize wear of engine components.eng
dc.format.extent22spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherLubricantsspa
dc.relation.ispartofLubricants. vol 10 No°4[2022]
dc.rights© 2022 by the authorseng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.scopus.com/record/display.uri?eid=2-s2.0-85128992946&doi=10.3390%2flubricants10040061&origin=inward&txGid=c1ea85d83404d9ddd54717b73182bfc4spa
dc.titleCFD Analysis of the Effect of Dimples and Cylinder Liner Honing Groove on the Tribological Characteristics of a Low Displacement Engineeng
dc.typeArtículo de revistaspa
dcterms.referencesGurt, A.; Khonsari, M. The Use of Entropy in Modeling the Mechanical Degradation of Grease. Lubricants 2019, 7, 82.spa
dcterms.referencesChong, W.W.F.; Hamdan, S.H.; Wong, K.J.; Yusup, S. Modelling Transitions in Regimes of Lubrication for Rough Surface Contact. Lubricants 2019, 7, 77.spa
dcterms.referencesTung, S.C.; McMillan, M.L. Automotive Tribology Overview of Current Advances and Challenges for the Future. Tribol. Int. 2004, 37, 517–536.spa
dcterms.referencesHolmberg, K.; Andersson, P.; Erdemir, A. Global Energy Consumption Due to Friction in Passenger Cars. Tribol. Int. 2012, 47, 221–234.spa
dcterms.referencesSöderfjäll, M.; Herbst, H.M.; Larsson, R.; Almqvist, A. Influence on Friction from Piston Ring Design, Cylinder Liner Roughness and Lubricant Properties. Tribol. Int. 2017, 116, 272–284.spa
dcterms.referencesRahmani, R.; Rahnejat, H.; Fitzsimons, B.; Dowson, D. The Effect of Cylinder Liner Operating Temperature on Frictional Loss and Engine Emissions in Piston Ring Conjunction. Appl. Energy 2017, 191, 568–581.spa
dcterms.referencesFuruhama, S.; Sumi, T. A Dynamic Theory of Piston-Ring Lubrication: 3rd Report, Measurement of Oil Film Thickness. Bull. JSME 1961, 4, 744–752.spa
dcterms.referencesMa, M.-T.; Sherrington, I.; Smith, E.H. Analysis of Lubrication and Friction for a Complete Piston-Ring Pack with an Improved Oil Availability Model: Part 1: Circumferentially Uniform Film. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 1997, 211, 1–15.spa
dcterms.referencesAkalin, O.; Newaz, G.M. Piston Ring-Cylinder Bore Friction Modeling in Mixed Lubrication Regime: Part I—Analytical Results. J. Trib. 2001, 123, 211–218.spa
dcterms.referencesJeng, Y.-R. Theoretical Analysis of Piston-Ring Lubrication Part II—Starved Lubrication and Its Application to a Complete Ring Pack. Tribol. Trans. 1992, 35, 707–714.spa
dcterms.referencesFuruhama, S.; Sasaki, S. New Device for the Measurement of Piston Frictional Forces in Small Engines. SAE Trans. 1983, 92, 781–792spa
dcterms.referencesTian, T. Dynamic Behaviours of Piston Rings and Their Practical Impact. Part 2: Oil Transport, Friction and Wear of Ring/Liner Interface and the Effects of Piston and Ring Dynamics. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2002, 216, 229–248.spa
dcterms.referencesMorris, N.; Mohammadpour, M.; Rahmani, R.; Rahnejat, H. Optimisation of the Piston Compression Ring for Improved Energy Efficiency of High Performance Race Engines. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 1806–1817.spa
dcterms.referencesBewsher, S.R.; Leighton, M.; Mohammadpour, M.; Rahnejat, H.; Offner, G.; Knaus, O. Atomic Force Microscopic Measurement of a Used Cylinder Liner for Prediction of Boundary Friction. Proc. Inst. Mech. Eng. Part. D J. Automob. Eng. 2019, 233, 1879–1889.spa
dcterms.referencesUsman, A.; Park, C.W. Modeling and Simulation of Frictional Energy Loss in Mixed Lubrication of a Textured Piston Compression Ring during Warm-up of Spark Ignition Engine. Int. J. Engine Res. 2017, 18, 293–307.spa
dcterms.referencesHowell-Smith, S.; Rahnejat, H.; King, P.D.; Dowson, D. Reducing In-Cylinder Parasitic Losses through Surface Modification and Coating. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 391–402.spa
dcterms.referencesLi, C.-D.; Jin, M.; Du, F.-M.; Wang, W.-W.; Shen, Y.; Xu, J.-J. Wear Behavior of Al-Si Alloy Cylinder Liner Prepared by Laser Finishing. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2018, 232, 1944–1949.spa
dcterms.referencesSenatore, A.; Risitano, G.; Scappaticci, L.; D’Andrea, D. Investigation of the Tribological Properties of Different Textured Lead Bronze Coatings under Severe Load Conditions. Lubricants 2021, 9, 34.spa
dcterms.referencesShum, P.W.; Zhou, Z.F.; Li, K.Y. Investigation of the Tribological Properties of the Different Textured DLC Coatings under Reciprocating Lubricated Conditions. Tribol. Int. 2013, 65, 259–264.spa
dcterms.referencesWang, X.; Liu, W.; Zhou, F.; Zhu, D. Preliminary Investigation of the Effect of Dimple Size on Friction in Line Contacts. Tribol. Int. 2009, 42, 1118–1123.spa
dcterms.referencesKligerman, Y.; Etsion, I.; Shinkarenko, A. Improving Tribological Performance of Piston Rings by Partial Surface Texturing. J. Trib. 2005, 127, 632–638.spa
dcterms.referencesSpencer, A. Optimizing Surface Texture for Combustion Engine Cylinder Liners. Ph.D. Thesis, Luleåtekniska Universitet, Luleå, Sweden, 2010.spa
dcterms.referencesLu, P.; Wood, R.J.K. Tribological Performance of Surface Texturing in Mechanical Applications—A Review. Surf. Topogr. Metrol. Prop. 2020, 8, 43001.spa
dcterms.referencesEtsion, I. Surface Texturing for In-Cylinder Friction Reduction. Tribol. Dyn. Engine Powertrain 2010, 458–470.spa
dcterms.referencesParanjpe, R.S.; Cusenza, A. FLARE: An Integrated Software Package for Friction and Lubrication Analysis of Automotive Engines-Part II: Experimental Validation. SAE Tech. Pap. 1992, 920488.spa
dcterms.referencesHu, Y.; Meng, X.; Xie, Y. A New Efficient Flow Continuity Lubrication Model for the Piston Ring-Pack with Consideration of Oil Storage of the Cross-Hatched Texture. Tribol. Int. 2018, 119, 443–463.spa
dcterms.referencesVladescu, S.-C.; Medina, S.; Olver, A.V.; Pegg, I.G.; Reddyhoff, T. Lubricant Film Thickness and Friction Force Measurements in a Laser Surface Textured Reciprocating Line Contact Simulating the Piston Ring–Liner Pairing. Tribol. Int. 2016, 98, 317–329.spa
dcterms.referencesPawlus, P.; Dzierwa, A.; Michalski, J.; Reizer, R.; Wieczorowski, M.; Majchrowski, R. The Effect of Selected Parameters of the Honing Process on Cylinder Liner Surface Topography. Surf. Topogr. Metrol. Prop. 2014, 2, 25004.spa
dcterms.referencesJeng, Y.-R. Impact of Plateaued Surfaces on Tribological Performance. Tribol. Trans. 1996, 39, 354–361.spa
dcterms.referencesVlădescu, S.-C.; Ciniero, A.; Tufail, K.; Gangopadhyay, A.; Reddyhoff, T. Looking into a Laser Textured Piston Ring-Liner Contact. Tribol. Int. 2017, 115, 140–153.spa
dcterms.referencesGuo, Y.; Lu, X.; Li, W.; He, T.; Zou, D. A Mixed-Lubrication Model Considering Elastoplastic Contact for a Piston Ring and Application to a Ring Pack. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2015, 229, 174–188.spa
dcterms.referencesPatir, N.; Cheng, H.S. An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication. J. Lubricants Technol. 1978, 100, 12–17.spa
dcterms.referencesDowson, D.; Higginson, G.R. A Numerical Solution to the Elasto-Hydrodynamic Problem. J. Mech. Eng. Sci. 1959, 1, 6–15.spa
dcterms.referencesHoupert, L. New Results of Traction Force Calculations in Elastohydrodynamic Contacts. J. Tribol. 1985, 107, 241–245.spa
dcterms.referencesGu, C.; Meng, X.; Xie, Y.; Kong, X. Performance of Surface Texturing during Start-up under Starved and Mixed Lubrication. J. Tribol. 2017, 139, 11702.spa
dcterms.referencesRonen, A.; Etsion, I.; Kligerman, Y. Friction-Reducing Surface-Texturing in Reciprocating Automotive Components. Tribol. Trans. 2001, 44, 359–366.spa
dcterms.referencesSpencer, A.; Almqvist, A.; Larsson, R. A Semi-Deterministic Texture-Roughness Model of the Piston Ring–Cylinder Liner Contact. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2011, 225, 325–333.spa
dcterms.referencesRahmani, R.; Theodossiades, S.; Rahnejat, H.; Fitzsimons, B. Transient Elastohydrodynamic Lubrication of Rough New or Worn Piston Compression Ring Conjunction with an Out-of-Round Cylinder Bore. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 284–305.spa
dcterms.referencesZavos, A.; Nikolakopoulos, P.G. Investigation of the Top Compression Ring Power Loss and Energy Consumption for Different Engine Conditions. Tribol. Surfaces Interfaces 2021, 1, 1–13.spa
dcterms.referencesGreenwood, J.A.; Tripp, J.H. The Contact of Two Nominally Flat Rough Surfaces. Proc. Inst. Mech. Eng. 1970, 185, 625–633.spa
dcterms.referencesTeodorescu, M.; Balakrishnan, S.; Rahnejat, H. Integrated Tribological Analysis within a Multi- Physics Approach to System Dynamics. Tribol. Interface Eng. Ser. 2005, 48, 725–737.spa
dcterms.referencesPopoola, O.; Cao, Y. The Influence of Turbulence Models on the Accuracy of CFD Analysis of a Reciprocating Mechanism Driven Heat Loop. Case Stud. Therm. Eng. 2016, 8, 277–290.spa
dcterms.referencesKoch, F.; Decker, P.; Gülpen, R.; Quadflieg, F.J.; Loeprecht, M. Cylinder Liner Deformation Analysis—Measurements and Calculations. SAE Trans. 1998, 107, 838–847.spa
dcterms.referencesZavos, A.; Nikolakopoulos, P.G. Tribology of New Thin Compression Ring of Fired Engine under Controlled Conditions-A Combined Experimental and Numerical Study. Tribol. Int. 2018, 128, 214–230.spa
dcterms.referencesTsujiuchi, N.; Koizumi, T.; Hamada, K.; Okamura, M.; Tsukijima, H. Optimization of Profile for Reduction of Piston Slap Excitation. In Proceedings of the Small Engine Technology Conference & Exposition, Graz, Austria, 27–30 September 2004; SAE: Warrendale, PA, USA, 2004.spa
dcterms.referencesGore, M.; Theaker, M.; Howell-Smith, S.; Rahnejat, H.; King, P.D. Direct Measurement of Piston Friction of Internal-Combustion Engines Using the Floating-Liner Principle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 344–354.spa
dc.contributor.corporatenameLubricantsspa
dc.identifier.doihttps://doi.org/10.3390/lubricants10040061
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol. 10 No° 4[2022]spa
dc.relation.citationendpage22spa
dc.relation.citationissue4[2022]spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume10spa
dc.relation.citesAbril, S.O.; Del Socorro Fonseca-Vigoya, M.; Pabón-León, J. CFD Analysis of the Effect of Dimples and Cylinder Liner Honing Groove on the Tribological Characteristics of a Low Displacement Engine. Lubricants 2022, 10, 61. https:// doi.org/10.3390/lubricants10040061
dc.relation.ispartofjournalLubricantsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalengine pistoneng
dc.subject.proposalsurface dimpleseng
dc.subject.proposalhoning grooveeng
dc.subject.proposalcylinder linereng
dc.subject.proposalcoefficient frictioneng
dc.subject.proposaltribologyeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 by the authors
Except where otherwise noted, this item's license is described as © 2022 by the authors