dc.contributor.author | Orjuela Abril, Martha Sofia | |
dc.contributor.author | FONSECA VIGOYA, MARLEN DEL SOCORRO | |
dc.contributor.author | Pabón León, Jhon | |
dc.date.accessioned | 2022-11-18T14:46:51Z | |
dc.date.available | 2022-11-18T14:46:51Z | |
dc.date.issued | 2022-04-07 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6536 | |
dc.description.abstract | The contact between the piston rings and the cylinder liner is an interface with a strong
influence on the tribological behavior and, therefore, directly affects the useful life of the engine
components and fuel consumption. Due to this importance, the present investigation carried out
an analysis of the effects of dimples and the honing groove in the cylinder liner on the tribological
characteristics. A tribological model was developed to study the friction forces, minimum film
thickness, and friction coefficient for the present investigation. Similarly, a computational fluid
dynamics model was built to determine the dynamic movement of the piston. The validation of the
numerical model showed a close similarity with the real behavior of the engine, obtaining an average
relative error of 14%. The analysis of the results showed that a 3% increase in dimples’ density leads
to a 3.79% increase in the minimum lubricant film and a 2.76% decrease in friction force. Additionally,
it was shown that doubling the radius and depth of the dimple produces an increase of 3.86% and
1.91% in the thickness of the lubrication film. The most suitable distribution of the dimples on the
surface of the cylinder liner corresponds to a square array. In general, the application of dimples and
honing grooves in the cylinder liner are promising alternatives to reduce energy losses and minimize
wear of engine components. | eng |
dc.format.extent | 22 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Lubricants | spa |
dc.relation.ispartof | Lubricants. vol 10 No°4[2022] | |
dc.rights | © 2022 by the authors | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://www.scopus.com/record/display.uri?eid=2-s2.0-85128992946&doi=10.3390%2flubricants10040061&origin=inward&txGid=c1ea85d83404d9ddd54717b73182bfc4 | spa |
dc.title | CFD Analysis of the Effect of Dimples and Cylinder Liner Honing Groove on the Tribological Characteristics of a Low Displacement Engine | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Gurt, A.; Khonsari, M. The Use of Entropy in Modeling the Mechanical Degradation of Grease. Lubricants 2019, 7, 82. | spa |
dcterms.references | Chong, W.W.F.; Hamdan, S.H.; Wong, K.J.; Yusup, S. Modelling Transitions in Regimes of Lubrication for Rough Surface Contact. Lubricants 2019, 7, 77. | spa |
dcterms.references | Tung, S.C.; McMillan, M.L. Automotive Tribology Overview of Current Advances and Challenges for the Future. Tribol. Int. 2004, 37, 517–536. | spa |
dcterms.references | Holmberg, K.; Andersson, P.; Erdemir, A. Global Energy Consumption Due to Friction in Passenger Cars. Tribol. Int. 2012, 47, 221–234. | spa |
dcterms.references | Söderfjäll, M.; Herbst, H.M.; Larsson, R.; Almqvist, A. Influence on Friction from Piston Ring Design, Cylinder Liner Roughness and Lubricant Properties. Tribol. Int. 2017, 116, 272–284. | spa |
dcterms.references | Rahmani, R.; Rahnejat, H.; Fitzsimons, B.; Dowson, D. The Effect of Cylinder Liner Operating Temperature on Frictional Loss and Engine Emissions in Piston Ring Conjunction. Appl. Energy 2017, 191, 568–581. | spa |
dcterms.references | Furuhama, S.; Sumi, T. A Dynamic Theory of Piston-Ring Lubrication: 3rd Report, Measurement of Oil Film Thickness. Bull. JSME 1961, 4, 744–752. | spa |
dcterms.references | Ma, M.-T.; Sherrington, I.; Smith, E.H. Analysis of Lubrication and Friction for a Complete Piston-Ring Pack with an Improved Oil Availability Model: Part 1: Circumferentially Uniform Film. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 1997, 211, 1–15. | spa |
dcterms.references | Akalin, O.; Newaz, G.M. Piston Ring-Cylinder Bore Friction Modeling in Mixed Lubrication Regime: Part I—Analytical Results. J. Trib. 2001, 123, 211–218. | spa |
dcterms.references | Jeng, Y.-R. Theoretical Analysis of Piston-Ring Lubrication Part II—Starved Lubrication and Its Application to a Complete Ring Pack. Tribol. Trans. 1992, 35, 707–714. | spa |
dcterms.references | Furuhama, S.; Sasaki, S. New Device for the Measurement of Piston Frictional Forces in Small Engines. SAE Trans. 1983, 92, 781–792 | spa |
dcterms.references | Tian, T. Dynamic Behaviours of Piston Rings and Their Practical Impact. Part 2: Oil Transport, Friction and Wear of Ring/Liner Interface and the Effects of Piston and Ring Dynamics. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2002, 216, 229–248. | spa |
dcterms.references | Morris, N.; Mohammadpour, M.; Rahmani, R.; Rahnejat, H. Optimisation of the Piston Compression Ring for Improved Energy Efficiency of High Performance Race Engines. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 1806–1817. | spa |
dcterms.references | Bewsher, S.R.; Leighton, M.; Mohammadpour, M.; Rahnejat, H.; Offner, G.; Knaus, O. Atomic Force Microscopic Measurement of a Used Cylinder Liner for Prediction of Boundary Friction. Proc. Inst. Mech. Eng. Part. D J. Automob. Eng. 2019, 233, 1879–1889. | spa |
dcterms.references | Usman, A.; Park, C.W. Modeling and Simulation of Frictional Energy Loss in Mixed Lubrication of a Textured Piston Compression Ring during Warm-up of Spark Ignition Engine. Int. J. Engine Res. 2017, 18, 293–307. | spa |
dcterms.references | Howell-Smith, S.; Rahnejat, H.; King, P.D.; Dowson, D. Reducing In-Cylinder Parasitic Losses through Surface Modification and Coating. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 391–402. | spa |
dcterms.references | Li, C.-D.; Jin, M.; Du, F.-M.; Wang, W.-W.; Shen, Y.; Xu, J.-J. Wear Behavior of Al-Si Alloy Cylinder Liner Prepared by Laser Finishing. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2018, 232, 1944–1949. | spa |
dcterms.references | Senatore, A.; Risitano, G.; Scappaticci, L.; D’Andrea, D. Investigation of the Tribological Properties of Different Textured Lead Bronze Coatings under Severe Load Conditions. Lubricants 2021, 9, 34. | spa |
dcterms.references | Shum, P.W.; Zhou, Z.F.; Li, K.Y. Investigation of the Tribological Properties of the Different Textured DLC Coatings under Reciprocating Lubricated Conditions. Tribol. Int. 2013, 65, 259–264. | spa |
dcterms.references | Wang, X.; Liu, W.; Zhou, F.; Zhu, D. Preliminary Investigation of the Effect of Dimple Size on Friction in Line Contacts. Tribol. Int. 2009, 42, 1118–1123. | spa |
dcterms.references | Kligerman, Y.; Etsion, I.; Shinkarenko, A. Improving Tribological Performance of Piston Rings by Partial Surface Texturing. J. Trib. 2005, 127, 632–638. | spa |
dcterms.references | Spencer, A. Optimizing Surface Texture for Combustion Engine Cylinder Liners. Ph.D. Thesis, Luleåtekniska Universitet, Luleå, Sweden, 2010. | spa |
dcterms.references | Lu, P.; Wood, R.J.K. Tribological Performance of Surface Texturing in Mechanical Applications—A Review. Surf. Topogr. Metrol. Prop. 2020, 8, 43001. | spa |
dcterms.references | Etsion, I. Surface Texturing for In-Cylinder Friction Reduction. Tribol. Dyn. Engine Powertrain 2010, 458–470. | spa |
dcterms.references | Paranjpe, R.S.; Cusenza, A. FLARE: An Integrated Software Package for Friction and Lubrication Analysis of Automotive Engines-Part II: Experimental Validation. SAE Tech. Pap. 1992, 920488. | spa |
dcterms.references | Hu, Y.; Meng, X.; Xie, Y. A New Efficient Flow Continuity Lubrication Model for the Piston Ring-Pack with Consideration of Oil Storage of the Cross-Hatched Texture. Tribol. Int. 2018, 119, 443–463. | spa |
dcterms.references | Vladescu, S.-C.; Medina, S.; Olver, A.V.; Pegg, I.G.; Reddyhoff, T. Lubricant Film Thickness and Friction Force Measurements in a Laser Surface Textured Reciprocating Line Contact Simulating the Piston Ring–Liner Pairing. Tribol. Int. 2016, 98, 317–329. | spa |
dcterms.references | Pawlus, P.; Dzierwa, A.; Michalski, J.; Reizer, R.; Wieczorowski, M.; Majchrowski, R. The Effect of Selected Parameters of the Honing Process on Cylinder Liner Surface Topography. Surf. Topogr. Metrol. Prop. 2014, 2, 25004. | spa |
dcterms.references | Jeng, Y.-R. Impact of Plateaued Surfaces on Tribological Performance. Tribol. Trans. 1996, 39, 354–361. | spa |
dcterms.references | Vlădescu, S.-C.; Ciniero, A.; Tufail, K.; Gangopadhyay, A.; Reddyhoff, T. Looking into a Laser Textured Piston Ring-Liner Contact. Tribol. Int. 2017, 115, 140–153. | spa |
dcterms.references | Guo, Y.; Lu, X.; Li, W.; He, T.; Zou, D. A Mixed-Lubrication Model Considering Elastoplastic Contact for a Piston Ring and Application to a Ring Pack. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2015, 229, 174–188. | spa |
dcterms.references | Patir, N.; Cheng, H.S. An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication. J. Lubricants Technol. 1978, 100, 12–17. | spa |
dcterms.references | Dowson, D.; Higginson, G.R. A Numerical Solution to the Elasto-Hydrodynamic Problem. J. Mech. Eng. Sci. 1959, 1, 6–15. | spa |
dcterms.references | Houpert, L. New Results of Traction Force Calculations in Elastohydrodynamic Contacts. J. Tribol. 1985, 107, 241–245. | spa |
dcterms.references | Gu, C.; Meng, X.; Xie, Y.; Kong, X. Performance of Surface Texturing during Start-up under Starved and Mixed Lubrication. J. Tribol. 2017, 139, 11702. | spa |
dcterms.references | Ronen, A.; Etsion, I.; Kligerman, Y. Friction-Reducing Surface-Texturing in Reciprocating Automotive Components. Tribol. Trans. 2001, 44, 359–366. | spa |
dcterms.references | Spencer, A.; Almqvist, A.; Larsson, R. A Semi-Deterministic Texture-Roughness Model of the Piston Ring–Cylinder Liner Contact. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2011, 225, 325–333. | spa |
dcterms.references | Rahmani, R.; Theodossiades, S.; Rahnejat, H.; Fitzsimons, B. Transient Elastohydrodynamic Lubrication of Rough New or Worn Piston Compression Ring Conjunction with an Out-of-Round Cylinder Bore. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 284–305. | spa |
dcterms.references | Zavos, A.; Nikolakopoulos, P.G. Investigation of the Top Compression Ring Power Loss and Energy Consumption for Different Engine Conditions. Tribol. Surfaces Interfaces 2021, 1, 1–13. | spa |
dcterms.references | Greenwood, J.A.; Tripp, J.H. The Contact of Two Nominally Flat Rough Surfaces. Proc. Inst. Mech. Eng. 1970, 185, 625–633. | spa |
dcterms.references | Teodorescu, M.; Balakrishnan, S.; Rahnejat, H. Integrated Tribological Analysis within a Multi- Physics Approach to System Dynamics. Tribol. Interface Eng. Ser. 2005, 48, 725–737. | spa |
dcterms.references | Popoola, O.; Cao, Y. The Influence of Turbulence Models on the Accuracy of CFD Analysis of a Reciprocating Mechanism Driven Heat Loop. Case Stud. Therm. Eng. 2016, 8, 277–290. | spa |
dcterms.references | Koch, F.; Decker, P.; Gülpen, R.; Quadflieg, F.J.; Loeprecht, M. Cylinder Liner Deformation Analysis—Measurements and Calculations. SAE Trans. 1998, 107, 838–847. | spa |
dcterms.references | Zavos, A.; Nikolakopoulos, P.G. Tribology of New Thin Compression Ring of Fired Engine under Controlled Conditions-A Combined Experimental and Numerical Study. Tribol. Int. 2018, 128, 214–230. | spa |
dcterms.references | Tsujiuchi, N.; Koizumi, T.; Hamada, K.; Okamura, M.; Tsukijima, H. Optimization of Profile for Reduction of Piston Slap Excitation. In Proceedings of the Small Engine Technology Conference & Exposition, Graz, Austria, 27–30 September 2004; SAE: Warrendale, PA, USA, 2004. | spa |
dcterms.references | Gore, M.; Theaker, M.; Howell-Smith, S.; Rahnejat, H.; King, P.D. Direct Measurement of Piston Friction of Internal-Combustion Engines Using the Floating-Liner Principle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 344–354. | spa |
dc.contributor.corporatename | Lubricants | spa |
dc.identifier.doi | https://doi.org/10.3390/lubricants10040061 | |
dc.publisher.place | Suiza | spa |
dc.relation.citationedition | Vol. 10 No° 4[2022] | spa |
dc.relation.citationendpage | 22 | spa |
dc.relation.citationissue | 4[2022] | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 10 | spa |
dc.relation.cites | Abril, S.O.; Del Socorro Fonseca-Vigoya, M.; Pabón-León, J. CFD Analysis of the Effect of Dimples and Cylinder Liner Honing Groove on the Tribological Characteristics of a Low Displacement Engine. Lubricants 2022, 10, 61. https:// doi.org/10.3390/lubricants10040061 | |
dc.relation.ispartofjournal | Lubricants | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | engine piston | eng |
dc.subject.proposal | surface dimples | eng |
dc.subject.proposal | honing groove | eng |
dc.subject.proposal | cylinder liner | eng |
dc.subject.proposal | coefficient friction | eng |
dc.subject.proposal | tribology | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |