Show simple item record

dc.contributor.authorNiño, Lilibeth
dc.contributor.authorPeñuela Vásquez, Mariana
dc.contributor.authorGelves, German
dc.date.accessioned2022-11-18T14:04:21Z
dc.date.available2022-11-18T14:04:21Z
dc.date.issued2021-08
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6534
dc.description.abstractA modified bubble coalescence model including rheological conditions and shear forces in non-Newtonian fluids is evaluated using CFD (Computational Fluid Dynamics). Euler's model, along with population balance equations, was used to simulate bubble size distribution. Simultaneously, different bubble breakage and coalescence models were evaluated to investigate mass transfer and bubble diameter. A conventional aeration stirring system (Rushton turbine, ring sparger) was used and the results were validated by determining the experimental mass transfer coefficient. A 10-liter bioreactor operated under different operating conditions commonly used for non-Newtonian rheology was used. Xanthan Gum 0.25% was used to resemble the rheological conditions developed during fungal culture. CFD results were contrasted with tested data obtained from 𝑘�𝑘�𝐿�𝐿�𝑎�𝑎� measurements at different stirring speeds using the concordance d-index. A reasonable prediction was obtained comparing the modified model Luo-New to the most used conventional models Luo-Luo and Laakkonen-Luo. Therefore, model Luo-New shows the highest d values at 400-700 rpm with values of 0.83, 0.95, 0.98 and 0.69. By contrast, the model Luo-Luo showed less inaccurate values with levels lower than 0.62 in almost all comparisons. The latter concludes numerically that the inclusion of viscosity effects and shear on a bubble coalescence model improves the degree of prediction related to oxygen transfer. The latter being a critical factor in the design and testing of stirring and aeration devices.eng
dc.format.extent14 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherJournal of Engineering Science and Technologyspa
dc.relation.ispartofJournal of Engineering Science and Technology. Vol.16 N°.4. (2021)
dc.rightsCopyright ©2006-2022 by: School of Engineering. Taylor’s Universityeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://jestec.taylors.edu.my/Vol%2016%20Issue%204%20August%202021/16_4_30.pdfspa
dc.titleBubble coalescence model effect on oxygen mass transfer using non-newtonian fluidseng
dc.typeArtículo de revistaspa
dcterms.referencesLehr, F.; Millies, M.; and Mewes, D. (2004). Bubble-size distributions and flow fields in bubble columns. American Institute of Chemical Engineering, 48(11), 2426-2443.spa
dcterms.referencesKarimi, A.; Golbabaei, F.; Mehrnia, M.R.; Neghab, M.; Mohammad, K.; Nikpey, A.; and Pourmand, M.R. (2013). Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes. Iranian Journal of Environmental Health Science and Engineering, 10(1), 1-6.spa
dcterms.referencesAmaral, P.F.F.; Freire, M.G.; Rocha-Leão, M.H.M.; Marrucho, I.M.; Coutinho, J.A.P.; and Coelho, M.A.Z. (2008). Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase. Biotechnology and Bioengineering, 99(3), 588-598.spa
dcterms.referencesNino, L.; Gelves, R.; Ali, H.; Solsvik, J.; and Jakobsen, H. (2020). Applicability of a modified breakage and coalescence model based on the complete turbulence spectrum concept for CFD simulation of gas-liquid mass transfer in a stirred tank reactor. Chemical Engineering Science, 211, 52-72.spa
dcterms.referencesAlopaeus, V.; Koskinen, J.; and Keskinen, K.I. (1999) Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. Part 1 description and qualitative validation of the model. Chemical Engineering Science, 54(24), 5887-5899.spa
dcterms.referencesMoilanen, P. (2009). Modeling gas-liquid flow and local mass transfer in stirred tanks. Doctoral dissertation, Helsinki University of Technology.spa
dcterms.referencesJenne, M.; and Reuss, M. (1999). A critical assessment on the use of k-ε turbulence models for simulation of the turbulent liquid flow induced by Rushton turbine in baffled stirred-tank reactors. Chemical Engineering Science, 54(17), 3921-3941.spa
dcterms.referencesLuo, J.Y.; Issa, R.I.; and Gosman, A.D. (1994). Prediction of impeller induced flows in mixing vessels using multiple frames of reference. Proceedings of the 8th European Conference on Mixing. Cambridge, United Kingdom, 549-556.spa
dcterms.referencesMicale, G.; Brucato, A.; Grisafi, F.; and Ciofalo,M. (1999). Prediction of flow fields in a dual-impeller stirred vessel. American Institute of Chemical Engineering, 45(3), 445-464.spa
dcterms.referencesTabor, G.; Gosman, A.D.; and Issa, R.I. (1996). Numerical simulation of the flow in a mixing vessel stirred by a Rushton turbine. Institute of Chemical Engineering, 32, 352-356.spa
dcterms.referencesRutherford, K.; Lee, K.C.; Mahmoudi, S.M.S.; and Yianneskis, M. (1996) Hydrodynamic characteristics of dual Rushton impeller stirred vessels. American Institute of Chemical Engineering, 42(2), 332-346.spa
dcterms.referencesBakker, A.; and Akker, H.E.A.V.D. (1994). A computational model for the gas-liquid flow in stirred reactors. Chemical Engineering Research and Design, 72(A4), 573-582.spa
dcterms.referencesKerdouss, F.; Bannari, A.; Proulx, P.; Bannari, R.; Skrga, M.; and Labrecque, Y. (2008). Two-phase mass transfer coefficient prediction in a stirred vessel with a CFD model. Computers and Chemical Engineering, 32(8), 1943-1955.spa
dcterms.referencesKerdouss, F.; Kiss, L.; Proulx, P.; Bilodeau, J.-F.; and Dupuis, C. (2005). Mixing characteristics of an axial-flow rotor: experimental and numerical study. International Journal of Chemical Reactor Engineering, 3(1).spa
dcterms.referencesLane, G.L.; Schwarz, M.P.; and Evans, G.M. (2002). Predicting gas-liquid flow in a mechanically stirred tank. Applied MathematicalModelling, 26(2), 223-235.spa
dcterms.referencesSolsvik, J.; and Jakobsen, H.A. (2015).A review of the statistical turbulence theory required extending the population balance closure models to the entire spectrum of turbulence. American Institute of Chemical Engineering, 62(5), 1795-1820.spa
dcterms.referencesLiao, Y.; and Lucas, D. (2010). A literature review on mechanisms and models for the coalescence process of fluid particles. Chemical Engineering Science, 65(10), 2851-2864.spa
dcterms.referencesLuo H.; and Svendsen, H.F. (1996). Theoretical model for drop and bubble break-up in turbulent dispersions. American Institute of Chemical Engineering, 42(5), 1225-1233.spa
dcterms.referencesPrince, M.J.; and Blanch, H.W. (1990). Bubble coalescence and breakup in air-sparged bubble columns. American Institute of Chemical Engineering, 36(10), 1485-1499.spa
dcterms.referencesNiño, L.; Gelves, R.; Ali, H.; Solsvik, J.; and Jakobsen, H. (2020). Applicability of a modified breakage and coalescence model based on the complete turbulence spectrum concept for CFD simulation of gas-liquid mass transfer in a stirred tank reactor. Chemical Engineering Science, 211, 115272.spa
dcterms.referencesLehr, F.; and Mewes, M.M.D. (2004). Bubble-size distributions and flow fields in bubble columns. American Institute of Chemical Engineering, 48(11), 2426-2443.spa
dcterms.referencesAlopaeus, V.; Koskinen, J.; and Keskinen, K.I. (1999). Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. Part 1 description and qualitative validation of the model. Chemical Engineering Science, 54(24), 5887-5899.spa
dcterms.referencesLaakkonen, M. (2006). Development and validation of mass transfer models for the design of agitated gas-liquid reactors. Doctor dissertation, Helsinki University of Technology.spa
dcterms.referencesMoilanen, P. (2009). Modeling gas-liquid flow and local mass transfer in stirred tanks. Doctor dissertation, Helsinki University of Technology.spa
dcterms.referencesHan, M. (2017). Hydrodynamics and mass transfer in airlift bioreactors : experimental and numerical simulation analysis. Doctor dissertation, Lappeenranta University of Technology.spa
dcterms.referencesChatzi, E.G.; Gavrielides, A.D.; and Kiparissides, C. (1989). Generalized model for prediction of the steady-state drop size distributions in batch stirred vessels. Industrial Engineering of Chemical Research, 28(11), 1704-1711.spa
dcterms.referencesAlopaeus, V.; Keskinen, K.I.; Koskinen, J.; and Majander, J. (2003). Gas-liquid and liquid-liquid system modeling using population balances for local mass transfer. Computer Aided Chemical Engineering, 14, 545-549.spa
dcterms.referencesRobertson, B.; and Ulbrecht, J.J. (1987). Measurement of shear rate on an agitator in a fermentation broth. Proceedings of the Biotechnology Processes: Scale-up Mixing. Miami, USA, 72-81.spa
dcterms.referencesCoulaloglou, C.A.; and Tavlarides, L.L. (1977). Description of interaction processes in agitated liquid-liquid dispersions. Chemical Engineering Science, 32(11), 1289-1297.spa
dcterms.referencesJakobsen, H.A.; Lindborg, H.; and Dorao, C.A. (2005). Modeling of bubble column reactors: progress and limitations. Industrial Engineering of Chemical Research, 44(14), 5107-5151.spa
dcterms.referencesSundararaj, U.; and Macosko, C.W. (1995). Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules, 28(8), 2647-2657.spa
dcterms.referencesTerasaka, K.; Murata, S.; and Tsutsumino, K. (2008). Bubble distribution in shear flow of highly viscous liquids. The Canadian Journal of Chemical Engineering, 81(3-4), 470-475.spa
dcterms.referencesChavez-Parga, M.C.; Gonzalez-Ortega, O.; Negrete-Rodriguez, M.L.X.; Medina-Torres, L.; and Silva, E.M.E. (2007). Hydrodynamics, mass transfer and rheological studies of gibberellic acid production in an airlift bioreactor. World Journal of Microbiological Biotechnology, 23(5), 615-623.spa
dcterms.referencesGabelle J.-C.; Jourdier, E.; Licht, R.B.; Chaabane, F.B.; Henaut, I.; Morchain, J.; and Augier, F. (2012). Impact of rheology on the mass transfer coefficient during the growth phase of Trichoderma reesei in stirred bioreactors. Chemical Engineering Science, 75, 408-417.spa
dcterms.referencesWillmott, C.J.; Steven, G.A.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O'Donnell, J.; and Rowe, C.M. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research, 90(5), 8995-9005.spa
dcterms.referencesGelves, R.; Dietrich, A.; and Takors, R. (2014). Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller. Bioprocess and Biosystems Engineering, 37(3), 365-375.spa
dcterms.referencesNino, L.; Peñuela, M.; and Gelves, G.R. (2018). Gas-liquid hydrodynamics simulation using CFD in a helical ribbon impeller applied for non-newtonian fluids. International Journal of Applied Engineering Research, 13(11), 9353-9359.spa
dcterms.referencesPolitano, M.S.; Carrica, P.M.; and Balino, J.L. (2003). About bubble breakup models to predict bubble size distributions inhomogeneous flows. Chemical Engineering Communications, 190(3), 299-321.spa
dcterms.referencesHan, M.; Sha, Z.; Laari, A.; and Koiranen, T. (2017). CFD-PBM coupled simulation of an airlift reactor with non-newtonian fluid. Oil & Gas Science and Technology, 72(5), 1-12.spa
dcterms.referencesHernandez, S.; Niño, L.; and Gelves, G. (2020). Simulating of Microbial Growth Scale Up in a Stirred Tank Bioreactor for Aerobic Processes using Computational Fluid Dynamics. Journal of Physics: Conference Series, 1655 1-6.spa
dcterms.referencesChisti, Y.; and Moo-Young, M. (1989). On the calculation of shear rate and apparent viscosity in airlift and bubble column bioreactors. Biotechnology and Bioengineering, 34(11), 1391-1392.spa
dcterms.referencesSanchez-Pérez, J.A.; Porcel, E.M.R.; López, J.L.C.; Sevilla, J.M.F.; and Chisti, Y. (2006). Shear rate in a stirred tank and bubble column bioreactors. Chemical Engineering Journal, 124(1-3), 1-5.spa
dcterms.referencesGelves, G. (2020). Simulating hydrodynamics in a Rushton turbine at different stirring velocities applied to non-Newtonian fluids. Proceedings of the 6th International Week of Science, Technology and Innovation. San José de Cúcuta, Colombia, 1-7.spa
dcterms.referencesLópez, L.C.N.; Peñuela, M.; and Gelves, G. (2016). Improving of gas-liquid mass transfer in a stirred tank bioreactor: A CFD approach. International Journal of Applied Engineering. Research, 11(9), 6097-6108.spa
dcterms.referencesNiño-López, L.C.; and Gelves-Zambrano, G.R. (2015). Simulating gas-liquid mass transfer in a spin filter bioreactor. Revista Facultad de Ingeniería, 1, 163-174.spa
dcterms.referencesNiño-López, L.; Cárdenas, A.A.; and Zambrano, R.G. (2013). Evaluation of chemical pretreatments for enzymatic hydrolysis of lignocellulosic residues cassava (Manihot esculenta Crantz). Revista Facultad de Ingeniería, 69, 317-326.spa
dc.contributor.corporatenameJournal of Engineering Science and Technologyspa
dc.publisher.placeMalasiaspa
dc.relation.citationeditionVol.16 No.4.(2021)spa
dc.relation.citationendpage3198spa
dc.relation.citationissue4spa
dc.relation.citationstartpage3185spa
dc.relation.citationvolume16spa
dc.relation.citesNIÑO, L., PEÑUELA, M., & GELVES, G. (2021). Bubble coalescence model effect on oxygen mass transfer using non-newtonian fluids. Journal of Engineering Science and Technology, 16(4), 3185-3198.
dc.relation.ispartofjournalJournal of Engineering Science and Technologyspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalBreak upeng
dc.subject.proposalCoalescenceeng
dc.subject.proposalCoulalogloueng
dc.subject.proposalNon-Newtonian fluidseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright ©2006-2022 by: School of Engineering. Taylor’s University
Except where otherwise noted, this item's license is described as Copyright ©2006-2022 by: School of Engineering. Taylor’s University