Mostrar el registro sencillo del ítem
Kinetic modeling of biosurfactant production from crude oil using Bacillus subtilis cells
dc.contributor.author | Alvarado, Kelly | |
dc.contributor.author | Niño, Lilibeth | |
dc.contributor.author | German, Gelves | |
dc.date.accessioned | 2022-11-17T22:29:50Z | |
dc.date.available | 2022-11-17T22:29:50Z | |
dc.date.issued | 2022-06-23 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6531 | |
dc.description.abstract | Crude oil and its derivatives have high application in different industries, and unforeseen spills or overexploitation generate a significant threat in ecosystems, causing negative impacts on soil, water, and air. There are microorganisms capable of metabolizing hydrocarbons through the bioremediation process with biosurfactant production, but large-scale culturing and technification are still a significant challenge due to their high costs and optimization stage requirement. An unstructured kinetic model provides crucial information regarding improvements and process optimization at the first stages. Thereof prediction of bioprocess kinetic behavior is expected from mathematical expressions. Considering the above, biosurfactants’ bioprocess modeling tends to be an essential tool to increasingly focus on the efficiency and profitability of oil industries. That is why biosurfactant kinetics production from Bacillus subtilis is investigated in this research, implementing a mathematical model. Previous studies refereed experimental data to integrate into Monod, Contois, Haldane, Moser, Powell, Tessier, Aiba-Edward, Luong, Yano-Koga, and Chen-Hashimoto equations. Therefore, a nonlinear regression parameterization procedure is applied using the Matlab Fmincon Function. The best accuracy found between experimental and simulated data was achieved using the Chen-Hashimoto kinetic model with μmax, kd and ks values of 2.3239 d− 1 , 0.3748 d− 1 and 1.1619 g/L, respectively. This research suggests that biosurfactant production occurs under anaerobic conditions where hydrolysis controls microbial growth. These research results are a promising aim related to industrial biotechnology since computational modeling is essential for process efficiency from a technical and economic perspective. | eng |
dc.format.extent | 6 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | South African Journal of Chemical Engineering | spa |
dc.relation.ispartof | South African Journal of Chemical Engineering. Vol.41 [2022] | |
dc.rights | © 2022 The Author(s) | eng |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.source | https://www.scopus.com/record/display.uri?eid=2-s2.0-85133793949&doi=10.1016%2fj.sajce.2022.06.009&origin=inward&txGid=8a4d543b72e532f6ae7546c8b141ee5d | spa |
dc.title | Kinetic modeling of biosurfactant production from crude oil using Bacillus subtilis cells | eng |
dc.type | Artículo de revista | spa |
dcterms.references | M. Muloiwa, S. Nyende-Byakika, M. Dinka Comparison of unstructured kinetic bacterial growth models S. Afr. J. Chem. Eng., 33 (2020), pp. 141-150 | spa |
dcterms.references | M. Ray, V. Kumar, C. Banerjee, P. Gupta, S. Singh Investigation of biosurfactants produced by three indigenous bacterial strains, their growth kinetics and their anthracene and fluorene tolerance Ecotoxicol. Environ. Saf., 208 (2020), pp. 1-10 | spa |
dcterms.references | S. Ritesh, H. Amit, B. Jaykumar, S. Vijayanand Kinetic modelling and process engineering aspects of biodesulfurization of liquid fuels: review and analysis Bioresour. Technol. Rep., 14 (2021), Article 100668 | spa |
dcterms.references | P. Saravanan, K. Pakshirajan, P. Saha Batch growth kinetics of an indigenous mixed microbial culture utilizing m-cresol as the sole carbon source J. Hazard. Mater., 162 (1) (2009), pp. 476-481 | spa |
dcterms.references | Saravanan et al., 2012 P. Saravanan, K. Pakshirajan, P. Saha Biodegradation Kinetics of Phenol By Predominantly Pseudomonas sp. in a Batch Shake Flask, 36, New Pub: Balaban (2012), pp. 99-104 | spa |
dcterms.references | S. Sharma, L. Pandey Production of biosurfactant by Bacillus subtilis RSL-2 isolated from sludge and biosurfactant mediated degradation of oil Bioresour. Technol., 307 (2020), pp. 1-9 | spa |
dcterms.references | P. Singh, Y. Patil, V. Rale Biosurfactant production: emerging trends and promising strategies J. Appl. Microbiol., 126 (2018), pp. 2-13 | spa |
dcterms.references | Soler, J.A. & Alcázar, N.R. (2020). Evaluación de la capacidad de biodegradación de diésel por células libres e inmovilizadas de Chromobacterium violaceum. Ingeniería Ambiental y Sanitaria. | spa |
dcterms.references | G. Tessier Croissance Des Populations Bact_Eriennes Et Quantit_E D'aliment Disponible, 80, Revue Scientifique Paris (1942), pp. 209-210 | spa |
dcterms.references | J. Velásquez Contaminación de suelos y cuerpos de agua por hidrocarburos en Colombia fitorremediación como estrategia biotecnológica de recuperación. Yopal Casanare: Universidad Nacional Abierta y a Distancia Rev. Investig. Agraria y Ambiental, 8 (1) (2016), pp. 151-167 | spa |
dcterms.references | J. Xue, Y. Wu, K. Shi, X. Xiao, Y. Gao, L. Li Study on the degradation performance and kinetics of immobilized cells in straw-alginate beads in marine environment Bioresour. Technol., 280 (2019), pp. 88-94 | spa |
dc.contributor.corporatename | South African Journal of Chemical Engineering | spa |
dc.identifier.doi | https://doi.org/10.1016/j.sajce.2022.06.009 | |
dc.publisher.place | Países Bajos | spa |
dc.relation.citationedition | vol. 176 [2022] | spa |
dc.relation.citationendpage | 181 | spa |
dc.relation.citationissue | [2022] | spa |
dc.relation.citationstartpage | 176 | spa |
dc.relation.citationvolume | 41 | spa |
dc.relation.ispartofjournal | South African Journal of Chemical Engineering | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.subject.proposal | Biosurfactant | eng |
dc.subject.proposal | Bioreactor | eng |
dc.subject.proposal | Crude oil | eng |
dc.subject.proposal | Optimizing | eng |
dc.subject.proposal | Modelling | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Ambiente y Vida - GIAV [124]