Mostrar el registro sencillo del ítem

dc.contributor.authorGonzález Delgado, Ángel Darío
dc.contributor.authorGarcía Martínez, Janet B.
dc.contributor.authorBarajas Solano, Andrés F.
dc.date.accessioned2022-11-17T21:35:26Z
dc.date.available2022-11-17T21:35:26Z
dc.date.issued2022-08-12
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6527
dc.description.abstract: Influenza is a respiratory disease that may cause severe consequences to human health. Influenza caused between 99,000 and 200,000 deaths worldwide in 2019. Studies have reported the presence of this virus in Santander, Colombia, a region with a high humanitarian flow. An influenza vaccine production plant topology has been proposed previously. Nevertheless, the inherent safety and sustainably behavior of this topology is unknown. Process safety plays a crucial role in the evaluation of emerging technologies since it allows the identification of potential risks. Moreover, the current sustainability policies enforce the assessment of processes considering economic, social, and environmental aspects. For this reason, a safety and sustainability evaluation of a vaccine production topology is performed in this work. The inherent safety index (ISI) methodology was implemented to analyze the process. The sustainability evaluation was performed using the sustainability weighted return on investment metric (SWROIM), in which return on investment (ROI), output potential environmental impact (PEI output), total safety inherent index (ITI), and exergy efficiency were considered. The results showed that influenza vaccine production is inherently safe since the total inherent safety index was 11. The destroyed exergy was 378.69 MJ/h, the return on investment was 86%, and the SWROIM was estimated at 81%, which means slightly negative impacts on sustainabilityeng
dc.format.extent13spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSustainabilityspa
dc.relation.ispartofSustainability. Vol 14 No°16[2022]
dc.rights© 2022 by the authorseng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.scopus.com/record/display.uri?eid=2-s2.0-85137673190&doi=10.3390%2fsu14169985&origin=inward&txGid=626089cbfb22d43fe38725fa2efa76a3spa
dc.titleInherent Safety Analysis and Sustainability Evaluation of a Vaccine Production Topology in North-East Colombiaeng
dc.typeArtículo de revistaspa
dcterms.referencesMoghadami, M. A Narrative Review of Influenza: A Seasonal and Pandemic Disease. Iran. J. Med. Sci. 2017, 42, 2–13.spa
dcterms.referencesPaget, J.; Spreeuwenberg, P.; Charu, V.; Taylor, R.J.; Iuliano, A.D.; Bresee, J.; Simonsen, L.; Viboud, C. Global Mortality Associated with Seasonal Influenza Epidemics: New Burden Estimates and Predictors from the GLaMOR Project. J. Glob. Health 2019, 9, 1–12spa
dcterms.referencesKarlsson, E.A.; Ciuoderis, K.; Freiden, P.J.; Seufzer, B.; Jones, J.C.; Johnson, J.; Parra, R.; Gongora, A.; Cardenas, D.; Barajas, D.; et al. Prevalence and Characterization of Influenza Viruses in Diverse Species in Los Llanos, Colombia. Emerg. Microbes Infect. 2013, 2, 1–10.spa
dcterms.referencesGarcía-Corzo, J.; Niederbacher-Velasquez, J.; González-Rugéles, C.; Rodríguez-Villamizar, L.; Machuca-Pérez, M.; Torres-Prieto, A. Etiología viral de infección respiratoria aguda en niños menores de 5 años en las provincias Comunera y García Rovira de Santander. Rev. Univ. Ind. Santander 2016, 48, 240–245.spa
dcterms.referencesGasparini, R.; Amicizia, D.; Lai, P.L.; Panatto, D. Influenza Vaccination: From Epidemiological Aspects and Advances in Research to Dissent and Vaccination Policies. J. Prev. Med. Hyg. 2016, 57, E1–E4.spa
dcterms.referencesContreras-Ropero, J.E.; Ruiz-Roa, S.L.; García-Martínez, J.B.; Urbina-Suarez, N.A.; López-Barrera, G.L.; Barajas-Solano, A.F.; Zuorro, A. A Simulation Analysis of an Influenza Vaccine Production Plant in Areas of High Humanitarian Flow. A Preliminary Study for the Region of Norte de Santander (Colombia). Appl. Sci. 2022, 12, 183.spa
dcterms.referencesGonzález-Delgado, A.D.; García-Martínez, J.B.; Barajas-Solano, A.F. Evaluation of Algae-Based Biodiesel Production Topologies via Inherent Safety Index (ISI). Appl. Sci. 2021, 11, 2854.spa
dcterms.referencesRasouli, A.; Hosseini, S.M.; Bahadori, M.K.; Ravangard, R. Characteristics of Occupational Injuries in a Pharmaceutical Company in Iran. Bull. Emerg. Trauma 2018, 6, 155–161.spa
dcterms.referencesMeramo-Hurtado, S.; Ceballos-Arrieta, N.; Cortes-Caballero, J.; Leon-Pulido, J.; Gonzalez-Quiroga, A.; Gonzalez-Delgado, Á.D. Inherent Safety Assessment of Industrial-Scale Production of Chitosan Microbeads Modified with TiO2 Nanoparticles. Biomolecules 2021, 11, 568.spa
dcterms.referencesZuorro, A.; Moreno-Sader, K.A.; González-Delgado, Á.D. Inherent Safety Analysis and Sustainability Evaluation of Chitosan Production from Shrimp Exoskeleton in Colombia. Water 2021, 13, 553.spa
dcterms.referencesKlemeš, J.J.; Jiang, P.; Van Fan, Y.; Bokhari, A.; Wang, X.-C. COVID-19 Pandemics Stage II—Energy and Environmental Impacts of Vaccination. Renew. Sustain. Energy Rev. 2021, 150, 111400.spa
dcterms.referencesDias, F.P.F.; Fernandes, I.T.; Bueno, A.V.; Rocha, P.A.C.; de Oliveira, M.L.M. Exergy Analysis of Glycerol Steam Reforming in a Heat Recovery Reactor. Int. J. Hydrogen Energy 2021, 46, 8995–9007.spa
dcterms.referencesKang, Q.; Tan, T. Exergy and CO2 Analyses as Key Tools for the Evaluation of Bio-Ethanol Production. Sustainability 2016, 8, 76.spa
dcterms.referencesHerrera-Rodriguez, T.; Parejo-Palacio, V.; González-Delgado, A. Technoeconomic sensibility analysis of industrial agar production from red algae. Chem. Eng. Trans. 2018, 70, 2029–2034.spa
dcterms.references. Zuorro, A.; Moreno-Sader, K.A.; González-Delgado, Á.D. Economic Evaluation and Techno-Economic Sensitivity Analysis of a Mass Integrated Shrimp Biorefinery in North Colombia. Polymers 2020, 12, 2397.spa
dcterms.referencesCassiani-Cassiani, D.; Meza-González, D.; González-Delgado, A. Environmental evaluation of agar production from macroalgae Gracilaria sp. Chem. Eng. Trans. 2018, 70, 2005–2010.spa
dcterms.referencesHerrera-Aristizábal, R.; Salgado-Dueñas, J.; Peralta-Ruiz, Y.; González-Delgado, A. Environmental evaluation of a palm-based biorefinery under North-Colombian condition. Chem. Eng. Trans. 2017, 57, 193–198.spa
dcterms.referencesLuján-Ornelas, C.; Güereca, L.P.; Franco-García, M.-L.; Heldeweg, M. A Life Cycle Thinking Approach to Analyse Sustainability in the Textile Industry: A Literature Review. Sustainability 2020, 12, 10193.spa
dcterms.referencesMeramo-Hurtado, S.I.; Sanchez-Tuiran, E.; Ponce-Ortega, J.M.; El-Halwagi, M.M.; Ojeda-Delgado, K.A. Synthesis and Sustainability Evaluation of a Lignocellulosic Multifeedstock Biorefinery Considering Technical Performance Indicators. ACS Omega 2020, 5, 9259–9275.spa
dcterms.referencesHeikkilä, A. Inherent Safety in Process Plant Design: An Index-Based Approach; VTT Technical Research Centre of Finland: Espoo, Finland, 1999spa
dcterms.referencesMoreno Sader, K.; León Pulido, J.; González-Delgado, A. Evaluación de la producción de aceite crudo de palma y palmiste en el norte de Colombia mediante el análisis de exergía asistido por computador. Rev. ION 2021, 34, 31–41.spa
dcterms.referencesGonzález-Delgado, A.D.; Barajas-Solano, A.F.; Leon-Pulido, J. Evaluating the Sustainability and Inherent Safety of a Crude Palm Oil Production Process in North-Colombia. Appl. Sci. 2021, 11, 1046.spa
dcterms.referencesZuorro, A.; Moreno-Sader, K.A.; González-Delgado, Á.D. Evaluating the Feasibility of a Pilot-Scale Shrimp Biorefinery via Techno-Economic Analysis. J. Clean. Prod. 2021, 320, 128740.spa
dcterms.referencesZamfir, M.; Manea, M.D.; Ionescu, L. Return on Investment—Indicator for Measuring the Profitability of Invested Capital. Valahian J. Econ. Stud. 2016, 7, 79–86.spa
dcterms.referencesYoung, D.M.; Cabezas, H. Designing Sustainable Processes with Simulation: The Waste Reduction (WAR) Algorithm. Comput. Chem. Eng. 1999, 23, 1477–1491.spa
dcterms.referencesYan, W.; Wang, T.; Zhao, L.; Sun, C. Modified DMEM Xenic Culture Medium for Propagation, Isolation and Maintenance of Balantioides Coli. Acta Trop. 2021, 214, 105762.spa
dcterms.referencesKurzweil, P.; Müller, A.; Wahler, S. The Ecological Footprint of COVID-19 mRNA Vaccines: Estimating Greenhouse Gas Emissions in Germany. Int. J. Environ. Res. Public Health 2021, 18, 7425.spa
dcterms.referencesGonzalez-Delgado, A.; Moreno-Sader, K.; Baldiris-Navarro, I. Inherent safety assessment of a valorization alternative for shrimp wastes under the concept of biorefinery. Prospectiva 2021, 19, 1–10.spa
dcterms.referencesMerck. Safety Data Sheet for Urea 818710; 2021. Available online: https://www.merckmillipore.com/CO/es/product/msds/ MDA_CHEM-818710 (accessed on 7 August 2022).spa
dcterms.referencesSolórzano-Álvarez, E.; Pérez-Tortolo, J.; Rodriguez-Dueñnas, J. Biological risk assessment for the production of inactivated vaccines for animal use. VacciMonitor 2020, 29, 93–102.spa
dcterms.referencesZhang, E. Improving Energy Efficiency in a Pharmaceutical Manufacturing Environment—Production Facility; Massachusetts Institute of Technology: Cambridge, MA, USA, 2010.spa
dcterms.referencesMunira, S. Viability of Local Vaccine Production in Developing Countries: An Economic Analysis of Cost Structures, Revenue Sizes, Market Shares and Vaccine Prices; Australian National University: Canberra, Australia, 2017.spa
dcterms.referencesLedley, F.; Shonka, S.; Vaughan, G.; Galkina, E. Profitability of large pharmaceutical companies compared with other large public companies. JAMA 2020, 323, 838–843.spa
dcterms.referencesHasija, V.; Patial, S.; Raizada, P.; Thakur, S.; Singh, P.; Mustansar, C. The environmental impact of mass coronavirus vaccinations: A point of view on huge COVID-19 vaccine waste across the globe during ongoing vaccine campaigns. Sci. Total Environ. 2022, 813, 151881.spa
dc.contributor.corporatenameSustainabilityspa
dc.identifier.doihttps://doi.org/10.3390/su14169985
dc.publisher.placeSuizaspa
dc.relation.citationeditionvol. 14 No° 16 [2022]spa
dc.relation.citationendpage13spa
dc.relation.citationissue16[2022]spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume14spa
dc.relation.citesn: González-Delgado, Á.D.; García-Martínez, J.B.; Barajas-Solano, A.F. Inherent Safety Analysis and Sustainability Evaluation of a Vaccine Production Topology in North-East Colombia. Sustainability 2022, 14, 9985. https://doi.org/10.3390/ su14169985
dc.relation.ispartofjournalSustainabilityspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalsustainability indicatorseng
dc.subject.proposalSWROIM;eng
dc.subject.proposaltotal inherent safety indexeng
dc.subject.proposalexergy efficiencyeng
dc.subject.proposalinfluenza vaccineeng
dc.subject.proposalROIeng
dc.subject.proposalpotential environmental impactseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2022 by the authors
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 by the authors