Mostrar el registro sencillo del ítem

dc.contributor.authorPeralta Hernandez, Edwin
dc.contributor.authorSorzano Jimenez, Francisco
dc.contributor.authorCoba Salcedo, Milton Fabian
dc.contributor.authorAcevedo Peñaloza, Carlos Humberto
dc.contributor.authorValencia Ochoa, Guillermo
dc.date.accessioned2021-12-12T23:35:32Z
dc.date.available2021-12-12T23:35:32Z
dc.date.issued2018-06-25
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/6384
dc.description.abstractThis article analyses the microstructure of ASTM-A36 steel both in its delivery state and after various cutting processes. The material was cut with some methods conventionally used in the metal-mechanical and construction industry, in addition to other non-conventional processes used to a lesser extent in the same industry. Similarly, similar cuts were made to maintain test homogeneity and to analyze the faces of the cut on each specimen in a similar manner. Among the conventional cuts made to the specimens are the milling, oxy-cutting and cutting machine, while the unconventional cuts applied were the wire by EDM and plasma, maintaining as far as possible similar cutting and working parameters. Subsequently, the cut surface of each of the specimens was analyzed and microscopic images of their microstructure were taken, from the results differences were established and it was defined which of the cutting methods used had the greatest effect on the material.eng
dc.format.extent08 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherContemporary Engineering Sciencesspa
dc.relation.ispartofContemporary Engineering Sciences
dc.rights© 2018 Edwin Peralta Hernandez, Francisco Sorzano Jimenez, Milton F. Coba Salcedo, Carlos Acevedo Penaloza and Guillermo Valencia Ochoa. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.eng
dc.sourcehttp://www.m-hikari.com/ces/ces2018/ces45-48-2018/85238.htmlspa
dc.titleExperimental study of the cutting processes on the microstructure of an ASTM A36 steeleng
dc.typeArtículo de revistaspa
dcterms.referencesJ. M. S. Eng and H. Mf, Analysis of Mechanical Behavior and Microstructural Characteristics Change of ASTM A-36 Steel Applying Various Heat Treatment, Journal of Material Science & Engineering, 5 (2016), no. 2.spa
dcterms.referencesS. Karagöz and H. F. Fischmeister, Metallographic observations on the wear process of TiN-coated cutting tools, Surf. Coatings Technol., 81 (1996), no. 2, 190–200. https://doi.org/10.1016/0257-8972(95)02487-5spa
dcterms.referencesH. Zhang, B. Long and Y. Dai, Metallography studies and hardness measurements on ferritic/martensitic steels irradiated in STIP, J. Nucl. Mater., 377 (2008), no. 1, 122–131. https://doi.org/10.1016/j.jnucmat.2008.02.037spa
dcterms.referencesA. Lawley and T. F. Murphy, Metallography of powder metallurgy materials, 51 (2004), no. 5, 315–327. https://doi.org/10.1016/j.matchar.2004.01.006spa
dcterms.referencesJ. Kümmel, J. Gibmeier, E. Müller, R. Schneider, V. Schulze and A. Wanner, Detailed analysis of microstructure of intentionally formed built-up edges for improving wear behaviour in dry metal cutting process of steel, Wear, 311 (2014), no. 1, 21–30. https://doi.org/10.1016/j.wear.2013.12.012spa
dcterms.referencesX. Gao, W. Zeng, Q. Zhao, S. Zhang, M. Li and Z. Zhu, Acquisition of recrystallization information using optical metallography in a metastable beta titanium alloy, J. Alloys Compd., 727 (2017), 346–352. https://doi.org/10.1016/j.jallcom.2017.08.141spa
dcterms.referencesS. Coatings, Standard Guide for Preparation of Metallographic Specimens 1, 2012, 1–12.spa
dcterms.referencesA. B. Gokhale and B. Sharbari, Sample Preparation For Metallography, in Characterization of Materials, American Cancer Society, 2012, 1–8. https://doi.org/10.1002/0471266965.com007.pub2spa
dcterms.referencesC. Jen‐Hao and P. Peng‐Chi, Using the microstructure and mechanical behavior of steel materials to develop a new fire investigation technology, Fire Mater., 41 (2017), no. 7, 864–870. https://doi.org/10.1002/fam.2438spa
dcterms.referencesA. B. P. B. Bhattacharyya, Modeling and analysis of white layer depth in a wire-cut EDM process through response surface methodology, The International Journal of Advanced Manufacturing Technology, 25 (2005), 301–302. https://doi.org/10.1007/s00170-003-2045-8spa
dc.identifier.doihttps://doi.org/10.12988/ces.2018.85238
dc.publisher.placeBulgariaspa
dc.relation.citationeditionVol.11 No.47.(2018)spa
dc.relation.citationendpage2340spa
dc.relation.citationissue47(2018)spa
dc.relation.citationstartpage2333spa
dc.relation.citationvolume11spa
dc.relation.citesHernández, E. P., Jímenez, F. S., Salcedo, M. F. C., Peñaloza, C. A., & Ochoa, G. V. (2018). Experimental Study of the Cutting Processes on the Microstructure of an ASTM A36 Steel.
dc.relation.ispartofjournalContemporary Engineering Sciencesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalMicrostructureeng
dc.subject.proposalMetallographyeng
dc.subject.proposalCutting processeseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem