Show simple item record

dc.contributor.authorCoba Salcedo, Milton Fabian
dc.contributor.authorBuj-Corral, Irene
dc.contributor.authorAcevedo Peñaloza, Carlos Humberto
dc.date.accessioned2021-12-11T16:05:21Z
dc.date.available2021-12-11T16:05:21Z
dc.date.issued2018
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/6372
dc.description.abstractAn experimental model of the honing process oriented towards the honing operation for very fine finished is development. A two-level design of experiments has been carried out with three factors and a replica. We chose the factors that have been shown to be most significant in honing machining such as grain size and pressure. In addition, as in honing, the angle of scratching is important and depends on the relationship between the two speeds, linear velocity VL and tangential velocity VT, one of them has also been chosen, the linear velocity VL, and the other velocity VT is kept constant. By varying only VL, the scratch angle is varied and the tangential speed VT is kept constant, the number of factors is reduced and the number of tests is reduced. The variable with the greatest influence and which is present in a significant way in all the output parameters is the abrasive grain size Gst, the pressure parameters P and linear velocity VL did not show to be particularly decisive in the finishing phase, especially for the roughness parameters. Manufacturers of hydraulic cylinders, surface finish of the inner wall of internal combustion engines and all those applications where it is machined with honingeng
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInternational Journal of ChemTech Researchspa
dc.relation.ispartofInternational Journal of ChemTech Research
dc.rightsAll Privacy & Copyrights reserved with Sai Scientific Communications.eng
dc.sourcehttps://sphinxsai.com/2018/ch_vol11_no9/ch03.htmspa
dc.titleExperimental model of the fine honingeng
dc.typeArtículo de revistaspa
dcterms.referencesSantochi, M., Vignale, M., “A study on the functional properties of a honed surface”, Annals of CIRP. Vol. 31/1 (1982) p. 431-434.spa
dcterms.referencesHashimoto, F., Melkote, S.N., Singh, R., Kalil, R. “Effect of finishing methods on surface characteristics and performance of precision components in rolling/sliding contact”, International journal of machining and machinability of materials. Vol. 6/1 (2009) pp. 3 -15spa
dcterms.referencesLawrence, D., Ramamoorthy, B., “An accurate and robust method for the honing angle evaluation of cylinder liner surface”, Int. J. Adv. Manuf. Technol. Vol. 55-5 (2011) p. 611-621.spa
dcterms.referencesWhitehouse, D., “Surface – A link between manufactura and function”, Proc. Instn. Mech. Engrs. Vol. 192 (1978) p. 179-188.spa
dcterms.referencesTyagi. J., et la., “On surface quality honed surface”, Proceeding of 5th International Conference on Production Engineering, Japan Society of Precision Engineering. 1984, p. 708-713.spa
dcterms.referencesSasaki, T., Okamura, K., “The cutting mechanics of honing”, Trans. JSME. Vol. 24/142 (1958) p. 372spa
dcterms.referencesSalje, E., Mohlen, H., and von See, M., “Comparison of grinding and honing process”, SME Manufacturing Technology Review. 1986, p. 649-653.spa
dcterms.referencesSalje, E., Mohlen, H., and von See, M., “Process Optimization in honing”, Annals of the CIRP. Vol. 36/1, Enero 1987, p. 235-239.spa
dcterms.referencesSalje, E., Mohlen, H., and von See, M., “Quality control in honing”, Proceedings of International Honing Technologies and Applications. SME Mayo, 1988.spa
dcterms.referencesFischer, H., “SME Honing technology clinic”, SME Paper No. MR82-939, Junio 1982.spa
dcterms.referencesFischer, H., “Handbook of Modern Grinding Technology”, Chapter 13, Chapman and Hall, New York, 1986.spa
dcterms.referencesFischer, H., “Honing Basic Know How Improves Specific Applications”, Cutting Tool Engineering. Vol. 39, No. 7, 1987, p. 38-40.spa
dcterms.referencesHaasis. G., “Plateau-Honing as a modification of a finish process”, Jahrbuch Scheleifen, Honen, Läppen und Polieren. Vol. 44 (1974) p. 328-335.spa
dcterms.referencesHaasis, G., “Developments in Honing Techniques”, Proceedings of International Honing Technologies and Applications, SME, Mayo, 1988.spa
dcterms.referencesHaasis, G., “Honing Technology 1992 – Improvements and New Procedures”, Inter. Honing Clinic Conference – SME MF92-129 Dearborn Michi. April 1992.spa
dcterms.referencesFeng, C-X., Wang, X-F., “Surface roughness predictive modelling: Neural Networks versus Regression”, IIE Transc. On Design and Manufact. 35 (2002) p. 11-27.spa
dcterms.referencesBen Fredj, N., Amamou, R., Rezgui, M.A., “Surface roughness prediction based upon experimental design on neural networks models”, Proce. Of the IEEE Int. Conf. Syst., Man and Cybernetics. Vol. 5 (2002) p. 129-134.spa
dcterms.referencesTroglio, A.T., “Performance evaluation of multi-stone honing tool by experimental design methods”. Inter. Honing 2003, (MR03-232), Itasca Illinois April 8-9, 2003.spa
dcterms.referencesKanthababu, M., Shunmugam, M.S., Singaperumal, M., “Identification of significant parameters and appropriate levels in honing of cylinder liners”, Int. J. Machining and Machinability of Materials. Vol. 5/1 (2009) p. 80-96.spa
dcterms.referencesKanthababu, M., Shunmugam, M.S., Singaperumal, M., “Data mining approach for selection of plateau honing parameters with dual objectives”, Int. J. Machining and Machinability of Materials, Vol. 8/1 (2010) p. 167-176.spa
dcterms.referencesFEPA, 61/97 - FEPA standard for superabrasives grain sizes, (1997).spa
dcterms.referencesMalkin, S., Grinding Techonology: “Theory and Applications of Machining with Abrasives”, Ellis Horwood, Chichester, 1989.spa
dcterms.referencesPawlus, P., Ciieslak, T., Mathia, T., “The study liner plateau honing process”, Journal of materials processing technology. Vol. 209 (2009) p. 6078-6086.spa
dc.identifier.doihttp://dx.doi.org/10.20902/IJCTR.2018.110931
dc.publisher.placeIndiaspa
dc.relation.citationeditionVol.11 No.9.(2018)spa
dc.relation.citationendpage246spa
dc.relation.citationissue9(2018)spa
dc.relation.citationstartpage237spa
dc.relation.citationvolume11spa
dc.relation.citesSalcedo, M. F. C., Peñaloza, C. A., & Botia, G. P. (2018). Influence of Indenter Diameter on Dynamic Indentation Tests of PEGT and PA6 Thermoplastics.
dc.relation.ispartofjournalInternational Journal of ChemTech Researchspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalHoningeng
dc.subject.proposalregression analysiseng
dc.subject.proposalexperimental modeeng
dc.subject.proposalSurface characterizationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record