Mostrar el registro sencillo del ítem

dc.contributor.authorNiño, Lilibeth
dc.contributor.authorGelves, German
dc.contributor.authorAli, Haider
dc.contributor.authorSolsvik, Jannike
dc.contributor.authorJakobsen, Hugo Atle
dc.date.accessioned2021-11-02T17:18:11Z
dc.date.available2021-11-02T17:18:11Z
dc.date.issued2020-01-16
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/602
dc.description.abstractA generalized model for bubble breakage and coalescence is proposed using Computational Fluid Dynamics – CFD for considering the complete energy spectrum. An eulerian model and balance equations are simultaneously used to simulate the multiphase flow and bubble size distribution, respectively. The turbulent kinetic energy and its dissipation are calculated using the standard turbulence model k-ε. A semi-empirical model that solves the second-order longitudinal structure function based on an interpolation function is coupled to CFD via UDF (User Defined Functions) code. CFD results are compared with experimental data obtained from Sauter mean diameter measurements at different bioreactor positions and stirred by a Rushton turbine. A reasonable prediction is obtained in comparison with the original Coulaloglou and Tavlarides (Break up) and Prince and Blanch (Coalescence) model. Further, the generalized model was extended to other stirring and aeration geometries using the same 10 litter tank bioreactor. The latter for evaluating strategies for overcoming gas-liquid mass transfer problems commonly found in bioreactors and a significant effect of the energy spectrum is reached in the geometries studied. The above, explained by the kLa oxygen transfer rate and bubble size determinations. It is numerically demonstrated that flow patterns and bubble size significantly influence the average kLa mass transfer in a bioreactor.eng
dc.format.extent11 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherChemical Engineering Sciencespa
dc.relation.ispartofChemical Engineering Science ISSN: 0009-2509, 2019 vol:211 fasc: N/A págs: 1 - 11, DOI:10.1016/j.ces.2019.115272
dc.rights2019 Elsevier Ltd. All rights reserved.eng
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S0009250919307626?via%3Dihub#!spa
dc.titleApplicability of a modified breakage and coalescence model based on the complete turbulence spectrum concept for CFD simulation of gas-liquid mass transfer in a stirred tank reactoreng
dc.typeArtículo de revistaspa
dc.identifier.doi10.1016/j.ces.2019.115272
dc.publisher.placeAustraliaspa
dc.relation.citationeditionVol. 211, No. 115272 (2020)spa
dc.relation.citationendpage11spa
dc.relation.citationissue115272 (2020)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume211spa
dc.relation.citesNiño, L., Gelves, R., Ali, H., Solsvik, J. y Jakobsen, H. (2020). Applicability of a modified breakage and coalescence model based on the complete turbulence spectrum concept for CFD simulation of gas-liquid mass transfer in a stirred tank reactor. Chemical Engineering Science, 211, 1–11. https://doi.org/10.1016/j.ces.2019.115272
dc.relation.ispartofjournalChemical Engineeringspa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.subject.proposalBioreactoreng
dc.subject.proposalEnergy spectrumeng
dc.subject.proposalPopulation balanceeng
dc.subject.proposalKLa Gas-Liquid Mass Transfereng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem