Mostrar el registro sencillo del ítem
Manufacturing of Photoactive β-Bismuth Oxide by Flame Spray Oxidation
dc.contributor.author | Ferrer, Martha | |
dc.contributor.author | Muñoz-Saldaña, J. | |
dc.contributor.author | Ayala-Ayala, M. T. | |
dc.date.accessioned | 2021-12-10T21:08:22Z | |
dc.date.available | 2021-12-10T21:08:22Z | |
dc.date.issued | 2021-03-21 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/5924 | |
dc.description.abstract | Photoactive tetragonal bismuth oxide powder with different semiconducting characteristics was synthesized from Bi-pellets by flame spray oxidation. The effect of feedstock particle size and standoff distance (SOD) on the physical properties of β-Bi2O3 keeping constant the fuel/oxygen ratio is here reported. The flame spray oxidized powder was collected either from evaporated or in-flight particles quenched in water. The combination of flame spray processing parameters led to different β-Bi2O3 phase contents, oxidation characteristics, size distribution (nanometric and micrometric sized), morphology, and optical properties of the sprayed powder. The highest micrometric β-Bi2O3 content quenched in water was obtained at a SOD of 30 cm using a particle size distribution of 12-60 μm of Bi-feedstock. The obtained powder from in-flight particles collected in water allowed us to analyze the oxidation characteristics of bismuth. Micrometric powder shows the synthesis of snowman-like Bi/β-Bi2O3 Janus particles. The nanometric sized Bi2O3 powder was continuously obtained by spray oxidation, where its collection efficiency depends on processing parameters and showed spherical morphology and a highly pure tetragonal phase with narrow visible light absorbance (Eg = 2.26 eV). These optical characteristics indicate that the obtained β-Bi2O3 powder is suitable for high-performance visible-light photocatalyst. | eng |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Journal of Thermal Spray Technology | spa |
dc.relation.ispartof | Journal of Thermal Spray Technology | |
dc.rights | Springer Nature has partnered with Copyright Clearance Center's RightsLink service to offer a variety of options for reusing this content. | eng |
dc.source | https://link.springer.com/article/10.1007%2Fs11666-021-01182-2 | spa |
dc.title | Manufacturing of Photoactive β-Bismuth Oxide by Flame Spray Oxidation | eng |
dc.type | Artículo de revista | spa |
dcterms.references | H. Zhao, F. Tian, R. Wang, and R. Chen, A Review on Bismuth-Related Nanomaterials for Photocatalysis, Rev. Adv. Sci. Eng., 2014, 3(1), p 3-27. https://doi.org/10.1166/rase.2014.1050 | spa |
dcterms.references | D.A. Fernandez-Benavides, A.I. Gutierrez-Perez, A.M. Benitez-Castro, M.T. Ayala-Ayala, B. Moreno-Murguia, and J. Muñoz-Saldaña, Comparative Study of Ferroelectric and Piezoelectric Properties of BNT-BKT-BT Ceramics near the Phase Transition Zone, Materials (Basel), 2018, 11(3), p 2-16. https://doi.org/10.3390/ma11030361 | spa |
dcterms.references | D.A. Fernández-Benavides, L. Cervera-Chiner, Y. Jiménez, O.A. de Fuentes, A. Montoya, and J. Muñoz-Saldaña, A Novel Bismuth-Based Lead-Free Piezoelectric Transducer Immunosensor for Carbaryl Quantification, Sens. Actuators B Chem., 2019, 285, p 423-430. https://doi.org/10.1016/j.snb.2019.01.081 | spa |
dcterms.references | M. Esquivel-Gaon, S. Anguissola, D. Garry, A.D.C. Gallegos-Melgar, J.M. Saldaña, K.A. Dawson, A. De Vizcaya-Ruiz, and L.M. Del Razo, Bismuth-Based Nanoparticles as the Environmentally Friendly Replacement for Lead-Based Piezoelectrics, RSC Adv., 2015, 5(35), p 27295-27304. | spa |
dcterms.references | T. Jardiel, A.C. Caballero, and M. Villegas, Aurivillius Ceramics: Bi4Ti3O12-Based Piezoelectrics, J. Ceram. Soc. Jpn., 2008, 116, p 511-518. | spa |
dcterms.references | M. Mehring, From Molecules to Bismuth Oxide-Based Materials: Potential Homo- and Heterometallic Precursors and Model Compounds, Coord. Chem. Rev., 2007, 251(7-8), p 974-1006. https://doi.org/10.1016/j.ccr.2006.06.005 | spa |
dcterms.references | G. Malmros, The Crystal Structure of Alpha-Bi2O3, Acta Chem. Scand., 1970 https://doi.org/10.3891/acta.chem.scand.24-0384 | spa |
dcterms.references | H.A. Harwig, On the Structure of Bismuthsesquioxide: The Alpha, Beta, Gamma and Delta-Phase , Z. Anorg Allg. Chem., 1978, 444, p 151-166. https://doi.org/10.1090/gsm/146/03 | spa |
dcterms.references | N. Cornei, N. Tancret, F. Abraham, and O. Mentré, New ε-Bi2O3 Metastable Polymorph, Inorg. Chem., 2006, 45(13), p 4886-4888. https://doi.org/10.1021/ic0605221 | spa |
dcterms.references | A.F. Gualtieri, S. Immovilli, and M. Prudenziati, Powder X-Ray Diffraction Data for the New Polymorphic Compound ω-Bi2O3, Powder Diffr., 1997, 12(2), p 90-92. https://doi.org/10.1017/s0885715600009490 | spa |
dcterms.references | S. Ghedia, T. Locherer, R. Dinnebier, D.L.V.K. Prasad, U. Wedig, and M. Jansen, High-Pressure and High-Temperature Multianvil Synthesis of Metastable Polymorphs of Bi2O3: Crystal Structure and Electronic Properties, Phys. Rev. B, 2010, 82, p 1-12. https://doi.org/10.1103/PhysRevB.82.024106 | spa |
dcterms.references | A.L.J. Pereira, O. Gomis, J.A. Sans, J. Contreras-García, F.J. Manjón, P. Rodríguez-Hernández, A. Muñoz, and A. Beltrán, β-Bi2O3 under Compression: Optical and Elastic Properties and Electron Density Topology Analysis, Phys. Rev. B, 2016, 93(22), p 1-13. https://doi.org/10.1103/PhysRevB.93.224111 | spa |
dcterms.references | A.L.J. Pereira, J.A. Sans, R. Vilaplana, O. Gomis, F.J. Manjón, P. Rodríguez-Hernández, A. Muñoz, C. Popescu, and A. Beltrán, Isostructural Second-Order Phase Transition of β-Bi2O3 at High Pressures: An Experimental and Theoretical Study, J. Phys. Chem. C, 2014, 118(40), p 23189-23201. https://doi.org/10.1021/jp507826j | spa |
dcterms.references | X. Meng, and Z. Zhang, Bismuth-Based Photocatalytic Semiconductors: Introduction, Challenges and Possible Approaches, J. Mol. Catal. A Chem, 2016, 423, p 533-549. https://doi.org/10.1016/j.molcata.2016.07.030 | spa |
dcterms.references | M. Schlesinger, S. Schulze, M. Hietschold, and M. Mehring, Metastable β-Bi2O3 Nanoparticles with High Photocatalytic Activity from Polynuclear Bismuth Oxido Clusters, Dalt. Trans., 2013, 42(4), p 1047-1056. https://doi.org/10.1039/c2dt32119j | spa |
dcterms.references | L. Liu, J. Jiang, S. Jin, Z. Xia, and M. Tang, Hydrothermal Synthesis of β-Bismuth Oxide Nanowires from Particles, CrystEngComm, 2011, 13(7), p 2529-2532. https://doi.org/10.1039/c0ce00773k | spa |
dcterms.references | J. Wang, X. Yang, K. Zhao, P. Xu, L. Zong, R. Yu, D. Wang, J. Deng, J. Chen, and X. Xing, Precursor-Induced Fabrication of β-Bi2O3 Microspheres and Their Performance as Visible-Light-Driven Photocatalysts, J. Mater. Chem. A, 2013, 1(32), p 9069-9074. https://doi.org/10.1039/c3ta11652b | spa |
dcterms.references | H.Y. Jiang, P. Li, G. Liu, J. Ye, and J. Lin, Synthesis and Photocatalytic Properties of Metastable β-Bi2O3 Stabilized by Surface-Coordination Effects, J. Mater. Chem. A R. Soc. Chem., 2015, 3(9), p 5119-5125. https://doi.org/10.1039/c4ta06235c | spa |
dcterms.references | T. Selvamani, S. Anandan, L. Granone, D.W. Bahnemann, and M. Ashokkumar, Phase-Controlled Synthesis of Bismuth Oxide Polymorphs for Photocatalytic Applications, Mater. Chem. Front. R. Soc. Chem., 2018, 2(9), p 1664-1673. https://doi.org/10.1039/c8qm00221e | spa |
dcterms.references | H.X. Hu, K.Q. Qiu, and G.F. Xu, Preparation of Nanometer δ- and β-Bismuth Trioxide by Vacuum Vapor-Phase Oxidation, Trans. Nonferrous Met. Soc. China (English Ed.), 2006, 16(1), p 173-177. https://doi.org/10.1016/S1003-6326(06)60031-9 | spa |
dcterms.references | L. Kumari, J.H. Lin, and Y.R. Ma, Synthesis of Bismuth Oxide Nanostructures by an Oxidative Metal Vapour Phase Deposition Technique, Nanotechnology, 2007, 18(29), p 7. https://doi.org/10.1088/0957-4484/18/29/295605 | spa |
dcterms.references | E. Diez, O. Monnereau, L. Tortet, G. Vacquier, P. Llewellin, and F. Rouquerol, Synthesis of Bismuth (III) Oxide from Oxalate: A Study by Controlled Transformation Rate Thermal Analysis (CRTA), J. Optoelectron. Adv. Mater., 2000, 2(5), p 552-556. | spa |
dcterms.references | Q. Huang, S. Zhang, C. Cai, and B. Zhou, β- and α-Bi2O3 Nanoparticles Synthesized via Microwave-Assisted Method and Their Photocatalytic Activity towards the Degradation of Rhodamine B, Mater. Lett., 2011, 65(6), p 988-990. https://doi.org/10.1016/j.matlet.2010.12.055 | spa |
dcterms.references | J. Hou, C. Yang, Z. Wang, W. Zhou, S. Jiao, and H. Zhu, In Situ Synthesis of α-β Phase Heterojunction on Bi2O3 Nanowires with Exceptional Visible-Light Photocatalytic Performance, Appl. Catal. B Environ., 2013, 142-143, p 504-511. https://doi.org/10.1016/j.apcatb.2013.05.050 | spa |
dcterms.references | L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed. Wiley, Hoboken, 2008. | spa |
dcterms.references | F. Fanicchia, D.A. Axinte, J. Kell, R. McIntyre, G. Brewster, and A.D. Norton, Combustion Flame Spray of CoNiCrAlY & YSZ Coatings, Surf. Coatings Technol., 2017, 315, p 546-557. https://doi.org/10.1016/j.surfcoat.2017.01.070 | spa |
dcterms.references | H.A. Harwig, and A.G. Gerards, The Polymorphism of Bismuth Sesquioxide, Thermochim. Acta, 1979, 28(1), p 121-131. https://doi.org/10.1016/0040-6031(79)87011-2 | spa |
dcterms.references | H.A. Harwig, and J.W. Weenk, Phase Relations in Bismuthsesquioxide, ZAAC J. Inorg. Gen. Chem., 1978, 444(1), p 167-177. https://doi.org/10.1002/zaac.19784440119 | spa |
dcterms.references | A.V. Naumov, World Market of Bismuth: A Review, Metall. Rare Noble Met., 2007, 48(1), p 13-19. https://doi.org/10.3103/S1067821207010038 | spa |
dcterms.references | P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Thermal Spray Fundamentals: From Powder to Part, 1st ed. Springer, New York, 2014. | spa |
dcterms.references | B.H. Toby, and R.B. Von Dreele, GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package, J. Appl. Crystallogr., 2013, 46(2), p 544-549. https://doi.org/10.1107/S0021889813003531 | spa |
dcterms.references | C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 Years of Image Analysis, Nat. Methods, 2012, 9(7), p 671-675. https://doi.org/10.1038/nmeth.2089 | spa |
dcterms.references | A.B. Murphy, Band-Gap Determination from Diffuse Reflectance Measurements of Semiconductor Films, and Application to Photoelectrochemical Water-Splitting, Sol. Energy Mater. Sol. Cells, 2007, 91(14), p 1326-1337. https://doi.org/10.1016/j.solmat.2007.05.005 | spa |
dcterms.references | U.I. Gaya, Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids, Springer, Dordrecht, 2013. | spa |
dcterms.references | H.Y. Deng, W.C. Hao, and H.Z. Xu, A Transition Phase in the Transformation from α-, β- And ∈- to δ-Bismuth Oxide, Chinese Phys. Lett., 2011, 28(5), p 3-6. https://doi.org/10.1088/0256-307X/28/5/056101 | spa |
dcterms.references | F. Mou, C. Chen, J. Guan, D.R. Chen, and H. Jing, Oppositely Charged Twin-Head Electrospray: A General Strategy for Building Janus Particles with Controlled Structures, Nanoscale, 2013, 5(5), p 2055-2064. https://doi.org/10.1039/c2nr33523a | spa |
dcterms.references | J. Hu, S. Zhou, Y. Sun, X. Fang, and L. Wu, Fabrication, Properties and Applications of Janus Particles, Chem. Soc. Rev., 2012, 41(11), p 4356-4378. https://doi.org/10.1039/c2cs35032g | spa |
dcterms.references | P.E.A. Salomão, D.S. Gomes, E.J.C. Ferreira, F. Moura, L.L. Nascimento, A.O.T. Patrocínio, and M.C. Pereira, Photoelectrochemical Hydrogen Production from Water Splitting Using Heterostructured Nanowire Arrays of Bi2O3/BiAl Oxides as a Photocathode, Sol. Energy Mater. Sol. Cells, 2019, 194, p 276-284. https://doi.org/10.1016/j.solmat.2018.12.037 | spa |
dcterms.references | M.W. Kim, B. Joshi, E. Samuel, K. Kim, Y. Il Kim, T.G. Kim, M.T. Swihart, and S.S. Yoon, Highly Nanotextured β-Bi2O3 Pillars by Electrostatic Spray Deposition as Photoanodes for Solar Water Splitting, J. Alloys Compd., 2018, 764, p 881-889. https://doi.org/10.1016/j.jallcom.2018.06.047 | spa |
dcterms.references | H.Y. Jiang, K. Cheng, and J. Lin, Crystalline Metallic Au Nanoparticle-Loaded α-Bi2O3 Microrods for Improved Photocatalysis, Phys. Chem. Chem. Phys., 2012, 14(35), p 12114-12121. https://doi.org/10.1039/c2cp42165h | spa |
dcterms.references | G. Zhu, W. Que, and J. Zhang, Synthesis and Photocatalytic Performance of Ag-Loaded β-Bi 2O3 Microspheres under Visible Light Irradiation, J. Alloys Compd., 2011, 509(39), p 9479-9486. https://doi.org/10.1016/j.jallcom.2011.07.046 | spa |
dcterms.references | K. Yang, J. Li, Y. Peng, and J. Lin, Enhanced Visible Light Photocatalysis over Pt-Loaded Bi2O3: An Insight into Its Photogenerated Charge Separation, Transfer and Capture, Phys. Chem. Chem. Phys. R. Soc. Chem., 2017, 19(1), p 251-257. https://doi.org/10.1039/c6cp06755g | spa |
dcterms.references | S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, and J. Tang, Visible-Light Driven Heterojunction Photocatalysts for Water Splitting-a Critical Review, Energy Environ. Sci. R. Soc. Chem., 2015, 8(3), p 731-759. https://doi.org/10.1039/c4ee03271c | spa |
dcterms.references | C. Li, J. Zhang, and K. Liu, A New Method of Enhancing Photoelectrochemical Characteristics of Bi/Bi2O3 Electrode for Hydrogen Generation via Water Splitting, Int. J. Electrochem. Sci., 2012, 7, p 5028-5034. | spa |
dc.identifier.doi | 10.1007/s11666-021-01182-2 | |
dc.relation.citationedition | Vol.30 (2021) | spa |
dc.relation.citationendpage | 1119 | spa |
dc.relation.citationstartpage | 1107 | spa |
dc.relation.citationvolume | 30 | spa |
dc.relation.cites | Ayala-Ayala, M.T., Ferrer-Pacheco, M.Y. & Muñoz-Saldaña, J. Manufacturing of Photoactive β-Bismuth Oxide by Flame Spray Oxidation. J Therm Spray Tech 30, 1107–1119 (2021). https://doi.org/10.1007/s11666-021-01182-2 | |
dc.relation.ispartofjournal | Journal of Thermal Spray Technology | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.subject.proposal | flame spray oxidation | eng |
dc.subject.proposal | optical properties | eng |
dc.subject.proposal | tetragonal bismuth oxide | eng |
dc.subject.proposal | visible-light photocatalyst | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_14cb | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |