Mostrar el registro sencillo del ítem

dc.contributor.authorFerrer, Martha
dc.contributor.authorMuñoz-Saldaña, J.
dc.contributor.authorAyala-Ayala, M. T.
dc.date.accessioned2021-12-10T21:08:22Z
dc.date.available2021-12-10T21:08:22Z
dc.date.issued2021-03-21
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/5924
dc.description.abstractPhotoactive tetragonal bismuth oxide powder with different semiconducting characteristics was synthesized from Bi-pellets by flame spray oxidation. The effect of feedstock particle size and standoff distance (SOD) on the physical properties of β-Bi2O3 keeping constant the fuel/oxygen ratio is here reported. The flame spray oxidized powder was collected either from evaporated or in-flight particles quenched in water. The combination of flame spray processing parameters led to different β-Bi2O3 phase contents, oxidation characteristics, size distribution (nanometric and micrometric sized), morphology, and optical properties of the sprayed powder. The highest micrometric β-Bi2O3 content quenched in water was obtained at a SOD of 30 cm using a particle size distribution of 12-60 μm of Bi-feedstock. The obtained powder from in-flight particles collected in water allowed us to analyze the oxidation characteristics of bismuth. Micrometric powder shows the synthesis of snowman-like Bi/β-Bi2O3 Janus particles. The nanometric sized Bi2O3 powder was continuously obtained by spray oxidation, where its collection efficiency depends on processing parameters and showed spherical morphology and a highly pure tetragonal phase with narrow visible light absorbance (Eg = 2.26 eV). These optical characteristics indicate that the obtained β-Bi2O3 powder is suitable for high-performance visible-light photocatalyst.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherJournal of Thermal Spray Technologyspa
dc.relation.ispartofJournal of Thermal Spray Technology
dc.rightsSpringer Nature has partnered with Copyright Clearance Center's RightsLink service to offer a variety of options for reusing this content.eng
dc.sourcehttps://link.springer.com/article/10.1007%2Fs11666-021-01182-2spa
dc.titleManufacturing of Photoactive β-Bismuth Oxide by Flame Spray Oxidationeng
dc.typeArtículo de revistaspa
dcterms.referencesH. Zhao, F. Tian, R. Wang, and R. Chen, A Review on Bismuth-Related Nanomaterials for Photocatalysis, Rev. Adv. Sci. Eng., 2014, 3(1), p 3-27. https://doi.org/10.1166/rase.2014.1050spa
dcterms.referencesD.A. Fernandez-Benavides, A.I. Gutierrez-Perez, A.M. Benitez-Castro, M.T. Ayala-Ayala, B. Moreno-Murguia, and J. Muñoz-Saldaña, Comparative Study of Ferroelectric and Piezoelectric Properties of BNT-BKT-BT Ceramics near the Phase Transition Zone, Materials (Basel), 2018, 11(3), p 2-16. https://doi.org/10.3390/ma11030361spa
dcterms.referencesD.A. Fernández-Benavides, L. Cervera-Chiner, Y. Jiménez, O.A. de Fuentes, A. Montoya, and J. Muñoz-Saldaña, A Novel Bismuth-Based Lead-Free Piezoelectric Transducer Immunosensor for Carbaryl Quantification, Sens. Actuators B Chem., 2019, 285, p 423-430. https://doi.org/10.1016/j.snb.2019.01.081spa
dcterms.referencesM. Esquivel-Gaon, S. Anguissola, D. Garry, A.D.C. Gallegos-Melgar, J.M. Saldaña, K.A. Dawson, A. De Vizcaya-Ruiz, and L.M. Del Razo, Bismuth-Based Nanoparticles as the Environmentally Friendly Replacement for Lead-Based Piezoelectrics, RSC Adv., 2015, 5(35), p 27295-27304.spa
dcterms.referencesT. Jardiel, A.C. Caballero, and M. Villegas, Aurivillius Ceramics: Bi4Ti3O12-Based Piezoelectrics, J. Ceram. Soc. Jpn., 2008, 116, p 511-518.spa
dcterms.referencesM. Mehring, From Molecules to Bismuth Oxide-Based Materials: Potential Homo- and Heterometallic Precursors and Model Compounds, Coord. Chem. Rev., 2007, 251(7-8), p 974-1006. https://doi.org/10.1016/j.ccr.2006.06.005spa
dcterms.referencesG. Malmros, The Crystal Structure of Alpha-Bi2O3, Acta Chem. Scand., 1970 https://doi.org/10.3891/acta.chem.scand.24-0384spa
dcterms.referencesH.A. Harwig, On the Structure of Bismuthsesquioxide: The Alpha, Beta, Gamma and Delta-Phase , Z. Anorg Allg. Chem., 1978, 444, p 151-166. https://doi.org/10.1090/gsm/146/03spa
dcterms.referencesN. Cornei, N. Tancret, F. Abraham, and O. Mentré, New ε-Bi2O3 Metastable Polymorph, Inorg. Chem., 2006, 45(13), p 4886-4888. https://doi.org/10.1021/ic0605221spa
dcterms.referencesA.F. Gualtieri, S. Immovilli, and M. Prudenziati, Powder X-Ray Diffraction Data for the New Polymorphic Compound ω-Bi2O3, Powder Diffr., 1997, 12(2), p 90-92. https://doi.org/10.1017/s0885715600009490spa
dcterms.referencesS. Ghedia, T. Locherer, R. Dinnebier, D.L.V.K. Prasad, U. Wedig, and M. Jansen, High-Pressure and High-Temperature Multianvil Synthesis of Metastable Polymorphs of Bi2O3: Crystal Structure and Electronic Properties, Phys. Rev. B, 2010, 82, p 1-12. https://doi.org/10.1103/PhysRevB.82.024106spa
dcterms.referencesA.L.J. Pereira, O. Gomis, J.A. Sans, J. Contreras-García, F.J. Manjón, P. Rodríguez-Hernández, A. Muñoz, and A. Beltrán, β-Bi2O3 under Compression: Optical and Elastic Properties and Electron Density Topology Analysis, Phys. Rev. B, 2016, 93(22), p 1-13. https://doi.org/10.1103/PhysRevB.93.224111spa
dcterms.referencesA.L.J. Pereira, J.A. Sans, R. Vilaplana, O. Gomis, F.J. Manjón, P. Rodríguez-Hernández, A. Muñoz, C. Popescu, and A. Beltrán, Isostructural Second-Order Phase Transition of β-Bi2O3 at High Pressures: An Experimental and Theoretical Study, J. Phys. Chem. C, 2014, 118(40), p 23189-23201. https://doi.org/10.1021/jp507826jspa
dcterms.referencesX. Meng, and Z. Zhang, Bismuth-Based Photocatalytic Semiconductors: Introduction, Challenges and Possible Approaches, J. Mol. Catal. A Chem, 2016, 423, p 533-549. https://doi.org/10.1016/j.molcata.2016.07.030spa
dcterms.referencesM. Schlesinger, S. Schulze, M. Hietschold, and M. Mehring, Metastable β-Bi2O3 Nanoparticles with High Photocatalytic Activity from Polynuclear Bismuth Oxido Clusters, Dalt. Trans., 2013, 42(4), p 1047-1056. https://doi.org/10.1039/c2dt32119jspa
dcterms.referencesL. Liu, J. Jiang, S. Jin, Z. Xia, and M. Tang, Hydrothermal Synthesis of β-Bismuth Oxide Nanowires from Particles, CrystEngComm, 2011, 13(7), p 2529-2532. https://doi.org/10.1039/c0ce00773kspa
dcterms.referencesJ. Wang, X. Yang, K. Zhao, P. Xu, L. Zong, R. Yu, D. Wang, J. Deng, J. Chen, and X. Xing, Precursor-Induced Fabrication of β-Bi2O3 Microspheres and Their Performance as Visible-Light-Driven Photocatalysts, J. Mater. Chem. A, 2013, 1(32), p 9069-9074. https://doi.org/10.1039/c3ta11652bspa
dcterms.referencesH.Y. Jiang, P. Li, G. Liu, J. Ye, and J. Lin, Synthesis and Photocatalytic Properties of Metastable β-Bi2O3 Stabilized by Surface-Coordination Effects, J. Mater. Chem. A R. Soc. Chem., 2015, 3(9), p 5119-5125. https://doi.org/10.1039/c4ta06235cspa
dcterms.referencesT. Selvamani, S. Anandan, L. Granone, D.W. Bahnemann, and M. Ashokkumar, Phase-Controlled Synthesis of Bismuth Oxide Polymorphs for Photocatalytic Applications, Mater. Chem. Front. R. Soc. Chem., 2018, 2(9), p 1664-1673. https://doi.org/10.1039/c8qm00221espa
dcterms.referencesH.X. Hu, K.Q. Qiu, and G.F. Xu, Preparation of Nanometer δ- and β-Bismuth Trioxide by Vacuum Vapor-Phase Oxidation, Trans. Nonferrous Met. Soc. China (English Ed.), 2006, 16(1), p 173-177. https://doi.org/10.1016/S1003-6326(06)60031-9spa
dcterms.referencesL. Kumari, J.H. Lin, and Y.R. Ma, Synthesis of Bismuth Oxide Nanostructures by an Oxidative Metal Vapour Phase Deposition Technique, Nanotechnology, 2007, 18(29), p 7. https://doi.org/10.1088/0957-4484/18/29/295605spa
dcterms.referencesE. Diez, O. Monnereau, L. Tortet, G. Vacquier, P. Llewellin, and F. Rouquerol, Synthesis of Bismuth (III) Oxide from Oxalate: A Study by Controlled Transformation Rate Thermal Analysis (CRTA), J. Optoelectron. Adv. Mater., 2000, 2(5), p 552-556.spa
dcterms.referencesQ. Huang, S. Zhang, C. Cai, and B. Zhou, β- and α-Bi2O3 Nanoparticles Synthesized via Microwave-Assisted Method and Their Photocatalytic Activity towards the Degradation of Rhodamine B, Mater. Lett., 2011, 65(6), p 988-990. https://doi.org/10.1016/j.matlet.2010.12.055spa
dcterms.referencesJ. Hou, C. Yang, Z. Wang, W. Zhou, S. Jiao, and H. Zhu, In Situ Synthesis of α-β Phase Heterojunction on Bi2O3 Nanowires with Exceptional Visible-Light Photocatalytic Performance, Appl. Catal. B Environ., 2013, 142-143, p 504-511. https://doi.org/10.1016/j.apcatb.2013.05.050spa
dcterms.referencesL. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed. Wiley, Hoboken, 2008.spa
dcterms.referencesF. Fanicchia, D.A. Axinte, J. Kell, R. McIntyre, G. Brewster, and A.D. Norton, Combustion Flame Spray of CoNiCrAlY & YSZ Coatings, Surf. Coatings Technol., 2017, 315, p 546-557. https://doi.org/10.1016/j.surfcoat.2017.01.070spa
dcterms.referencesH.A. Harwig, and A.G. Gerards, The Polymorphism of Bismuth Sesquioxide, Thermochim. Acta, 1979, 28(1), p 121-131. https://doi.org/10.1016/0040-6031(79)87011-2spa
dcterms.referencesH.A. Harwig, and J.W. Weenk, Phase Relations in Bismuthsesquioxide, ZAAC J. Inorg. Gen. Chem., 1978, 444(1), p 167-177. https://doi.org/10.1002/zaac.19784440119spa
dcterms.referencesA.V. Naumov, World Market of Bismuth: A Review, Metall. Rare Noble Met., 2007, 48(1), p 13-19. https://doi.org/10.3103/S1067821207010038spa
dcterms.referencesP.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Thermal Spray Fundamentals: From Powder to Part, 1st ed. Springer, New York, 2014.spa
dcterms.referencesB.H. Toby, and R.B. Von Dreele, GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package, J. Appl. Crystallogr., 2013, 46(2), p 544-549. https://doi.org/10.1107/S0021889813003531spa
dcterms.referencesC.A. Schneider, W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 Years of Image Analysis, Nat. Methods, 2012, 9(7), p 671-675. https://doi.org/10.1038/nmeth.2089spa
dcterms.referencesA.B. Murphy, Band-Gap Determination from Diffuse Reflectance Measurements of Semiconductor Films, and Application to Photoelectrochemical Water-Splitting, Sol. Energy Mater. Sol. Cells, 2007, 91(14), p 1326-1337. https://doi.org/10.1016/j.solmat.2007.05.005spa
dcterms.referencesU.I. Gaya, Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids, Springer, Dordrecht, 2013.spa
dcterms.referencesH.Y. Deng, W.C. Hao, and H.Z. Xu, A Transition Phase in the Transformation from α-, β- And ∈- to δ-Bismuth Oxide, Chinese Phys. Lett., 2011, 28(5), p 3-6. https://doi.org/10.1088/0256-307X/28/5/056101spa
dcterms.referencesF. Mou, C. Chen, J. Guan, D.R. Chen, and H. Jing, Oppositely Charged Twin-Head Electrospray: A General Strategy for Building Janus Particles with Controlled Structures, Nanoscale, 2013, 5(5), p 2055-2064. https://doi.org/10.1039/c2nr33523aspa
dcterms.referencesJ. Hu, S. Zhou, Y. Sun, X. Fang, and L. Wu, Fabrication, Properties and Applications of Janus Particles, Chem. Soc. Rev., 2012, 41(11), p 4356-4378. https://doi.org/10.1039/c2cs35032gspa
dcterms.referencesP.E.A. Salomão, D.S. Gomes, E.J.C. Ferreira, F. Moura, L.L. Nascimento, A.O.T. Patrocínio, and M.C. Pereira, Photoelectrochemical Hydrogen Production from Water Splitting Using Heterostructured Nanowire Arrays of Bi2O3/BiAl Oxides as a Photocathode, Sol. Energy Mater. Sol. Cells, 2019, 194, p 276-284. https://doi.org/10.1016/j.solmat.2018.12.037spa
dcterms.referencesM.W. Kim, B. Joshi, E. Samuel, K. Kim, Y. Il Kim, T.G. Kim, M.T. Swihart, and S.S. Yoon, Highly Nanotextured β-Bi2O3 Pillars by Electrostatic Spray Deposition as Photoanodes for Solar Water Splitting, J. Alloys Compd., 2018, 764, p 881-889. https://doi.org/10.1016/j.jallcom.2018.06.047spa
dcterms.referencesH.Y. Jiang, K. Cheng, and J. Lin, Crystalline Metallic Au Nanoparticle-Loaded α-Bi2O3 Microrods for Improved Photocatalysis, Phys. Chem. Chem. Phys., 2012, 14(35), p 12114-12121. https://doi.org/10.1039/c2cp42165hspa
dcterms.referencesG. Zhu, W. Que, and J. Zhang, Synthesis and Photocatalytic Performance of Ag-Loaded β-Bi 2O3 Microspheres under Visible Light Irradiation, J. Alloys Compd., 2011, 509(39), p 9479-9486. https://doi.org/10.1016/j.jallcom.2011.07.046spa
dcterms.referencesK. Yang, J. Li, Y. Peng, and J. Lin, Enhanced Visible Light Photocatalysis over Pt-Loaded Bi2O3: An Insight into Its Photogenerated Charge Separation, Transfer and Capture, Phys. Chem. Chem. Phys. R. Soc. Chem., 2017, 19(1), p 251-257. https://doi.org/10.1039/c6cp06755gspa
dcterms.referencesS.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, and J. Tang, Visible-Light Driven Heterojunction Photocatalysts for Water Splitting-a Critical Review, Energy Environ. Sci. R. Soc. Chem., 2015, 8(3), p 731-759. https://doi.org/10.1039/c4ee03271cspa
dcterms.referencesC. Li, J. Zhang, and K. Liu, A New Method of Enhancing Photoelectrochemical Characteristics of Bi/Bi2O3 Electrode for Hydrogen Generation via Water Splitting, Int. J. Electrochem. Sci., 2012, 7, p 5028-5034.spa
dc.identifier.doi10.1007/s11666-021-01182-2
dc.relation.citationeditionVol.30 (2021)spa
dc.relation.citationendpage1119spa
dc.relation.citationstartpage1107spa
dc.relation.citationvolume30spa
dc.relation.citesAyala-Ayala, M.T., Ferrer-Pacheco, M.Y. & Muñoz-Saldaña, J. Manufacturing of Photoactive β-Bismuth Oxide by Flame Spray Oxidation. J Therm Spray Tech 30, 1107–1119 (2021). https://doi.org/10.1007/s11666-021-01182-2
dc.relation.ispartofjournalJournal of Thermal Spray Technologyspa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.subject.proposalflame spray oxidationeng
dc.subject.proposaloptical propertieseng
dc.subject.proposaltetragonal bismuth oxideeng
dc.subject.proposalvisible-light photocatalysteng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem