Mostrar el registro sencillo del ítem

dc.contributor.authorGonzález-Delgado, Angel Darío
dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorZUORRO, Antonio
dc.contributor.authorMena Lopez, Nelson Osvaldo
dc.contributor.authorOrtegón Diaz, Manuel Alejandro
dc.contributor.authorGarcia, Janet Bibiana
dc.contributor.authorLavecchia, Roberto
dc.date.accessioned2021-10-30T21:43:17Z
dc.date.available2021-10-30T21:43:17Z
dc.date.issued2019-02
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/526
dc.description.abstractMicroalgae are an attractive source of metabolites, such as lipids, proteins, pigments and carbohydrates, of potential interest to the pharmaceutical, food and energy sectors. The aim of this study was to evaluate the effect of flocculation on lipid extraction from Chlorella Vulgaris. A 33 experimental design was performed with STATISTICA 7.0 software in order to determine the effects of flocculant (AlCl3) addition, pH and time. The best strategy of pH adjustmentflocculant addition was evaluated, followed by lipid extraction under optimal conditions. pH adjustment after the addition of flocculant provided higher flocculation efficiencies (87.2-98.9%) compared to adjustments made before adding the flocculant (67.8-85.9%). Experiments performed according to the experimental design led to a flocculation efficiency of 99.7% when 100 mg/L of AlCl3, pH 7 and a cultivation time of 18.3 days were used. The percentage of a lipid extract from the flocculated biomass was 2.7% and the flocculant did not affect the production of fatty acid methyl esters.eng
dc.format.extent12 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherJournal of Engineering Science and Technologyspa
dc.relation.ispartofJournal of Engineering Science and Technology ISSN: 1823-4690, 2019 vol:14 fasc: 1 págs: 181 - 192
dc.rightsSchool of Engineering, Taylor’s Universityeng
dc.sourcehttp://jestec.taylors.edu.my/Vol%2014%20issue%201%20February%202019/14_1_13.pdfspa
dc.titleEffect of flocculation on lipid extraction from Chlorella Vulgaris UTEX 1803 using response surface methodologyeng
dc.typeArtículo de revistaspa
dcterms.referencesMani, V.; Abhilasha; Gunasekar; Lavanya; and Sankaranarayanan, S. (2017). IoT based smart energy management system. International Journal of Applied Engineering Research, 12(16), 5455-5462.spa
dcterms.referencesAbas, N.; Kalair, A.; and Khan, N. (2015). Review of fossil fuels and future energy technologies. Futures, 69, 31-49.spa
dcterms.referencesMoriarty, P.; and Honnery, D. (2016). Can renewable energy power the future? Energy Policy, 93, 3-7.spa
dcterms.referencesBrannstrom, H.; Kumar, H.; and Alen, R. (2018). Current and potential biofuel production from plant oils. Bioenergy Research, 11(3), 592-613.spa
dcterms.referencesShow, K.-Y.; Yan, Y.; Ling, M.; Ye, G.; Li, T.; and Lee, D.-J. (2018). Hydrogen production from algal biomass - Advances, challenges and prospects. Bioresource Technology, 257, 290-300.spa
dcterms.referencesJoshi, G.; Pandey, J.K.; Rana, S.; and Rawat, D.S. (2017). Challenges and opportunities for the application of biofuel. Renewable and Sustainable Energy Reviews, 79, 850-866.spa
dcterms.referencesGaurav, N.; Sivasankari, S.; Kiran, G.S.; Ninawea, A.; and Selvinb, J. (2017). Utilization of bioresources for sustainable biofuels: A review. Renewable and Sustainable Energy Reviews, 73, 205-214.spa
dcterms.referencesPauline, M.N.; Aswini, M.; Pothigai, T.N.; and Achary, A. (2015). Microwave assisted biodiesel production from waste cooking oil. International Journal of Applied Engineering Research, 10(88), 243-249.spa
dcterms.referencesSu, Y.; Song, K.; Zhang, P.; Su, Y.; Cheng, J.; and Chen, X. (2017). Progress of microalgae biofuel’s commercialization. Renewable and Sustainable Energy Reviews, 74, 402-411.spa
dcterms.referencesKumar, M.; and Sharma, M.P. (2013). Production methodology of biodiesel from microalgae. International Journal of Applied Engineering Research, 8(15), 1825-1832.spa
dcterms.referencesChisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294-306.spa
dcterms.referencesZuorro, A.; Miglietta, S.; Familiari, G.; and Lavecchia, R. (2016). Enhanced lipid recovery from Nannochloropsis microalgae by treatment with optimized cell wall degrading enzyme mixtures. Bioresource Technology, 212, 35-41.spa
dcterms.referencesZuorro, A.; Maffei, G.; and Lavecchia, R. (2016). Optimization of enzymeassisted lipid extraction from Nannochloropsis microalgae. Journal of the Taiwan Institute of Chemical Engineers, 67, 106-114.spa
dcterms.referencesKnuckey, R.M.; Brown, M.R.; Robert R.; and Frampton, D.M.F. (2006). Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Agricultural Engineering, 35(3), 300-313.spa
dcterms.referencesZhang, Y.; Tian, J.; Nan, J.; Gao, S.; Liang, H.; Wang, M.; and Li, G. (2010). Effect of PAC addition on immersed ultrafiltration for the treatment of algalrich water. Journal of Hazardous Materials, 186(2-3), 1415-1424.spa
dcterms.referencesChen, Y.M.; Liu, J.C.; and Ju, Y.-H. (1998). Flotation removal of algae from water. Colloids and Surfaces B: Biointerfaces, 12(1), 49-55.spa
dcterms.referencesVandamme, D.; Foubert, I.; and Muylaert, K. (2013). Flocculation as a lowcost method for harvesting microalgae for bulk biomass production. Trends in Biotechnology, 31(4), 233-239.spa
dcterms.referencesBorges, L.; Moron-Villarreyes, J.A.; Montes D’Oca, M.G.; and Abreu, P.C. (2011). Effects of flocculants on lipid extraction and fatty acid composition of the microalgae Nannochloropsis oculata and Thalassiosira weissflogii. Biomass and Bioenergy, 35(10), 4449-4454.spa
dcterms.referencesUduman, N.; Qi, Y.; Danquah, M.K.; Forde G.M.; and Hoadley, A. (2010). Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy, 2(1), 15 pages.spa
dcterms.referencesGarzon-Sanabria, A.J.; Davis, R.T.; and Nikolov, Z.L. (2012). Harvesting Nannochloris oculata by inorganic electrolyte flocculation: Effect of initial cell density, ionic strength, coagulant dosage, and media pH. Bioresource Technology, 118, 418-424.spa
dcterms.referencesWu, Z.; Zhu, Y.; Huang, W.; Zhang, C.; Li, T.; Zhang, Y.; and Li, A. (2012). Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresource Technology, 110, 496-502.spa
dcterms.referencesHenderson, R.K.; Parsons, S.A.; and Jefferson, B. (2008). Successful removal of algae through the control of zeta potential. Separation Science and Technology, 43(7), 1653-1666.spa
dcterms.references. Gregory, J.; and Duan, J. (2001). Hydrolyzing metal salts as coagulants. Pure and Applied Chemistry, 73(12), 2017-2026.spa
dcterms.referencesGranados, M.R.; Acien, F.G.; Gomez, C.; Fernandez-Sevilla, J.M.; and Molina Grima, E.M. (2012). Evaluation of flocculants for the recovery of freshwater microalgae. Bioresource Technology, 118, 102-110.spa
dcterms.references. Duan, J.; and Gregory, J. (2003). Coagulation by hydrolysing metal salts. Advances in Colloid and Interface Science, 100-102, 475-502.spa
dcterms.referencesBorowitzka, M.A; and Moheimani, N.R. (2013). Algae for biofuels and energy. Dordrecht: Springer Science + Business Media.spa
dcterms.referencesVaz Jr., S. (2016). Analytical techniques and methods for biomass. Switzerland: Springer International Publishing.spa
dcterms.referencesHenderson, R.; Parsons, S.A.; and Jefferson, B. (2008). The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Research, 42(8-9), 1827-1845.spa
dcterms.referencesOhman, L.-O.; Wagberg, L.; Malmgren, K.; and Tjernstrom, A. (1997). Adsorption of aluminum (III) on cellulosic fibres in neutral to alkaline solutions - Influence of charge and size of the particles formed. Journal of Pulp and Paper Science, 23(10), J467-J474.spa
dcterms.referencesLee, J.-Y.; Yoo, C.; Jun, S.-Y.; Ahn, C.-Y.; and Oh, H.-M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101(1), S75-S77.spa
dc.publisher.placeMalasiaspa
dc.relation.citationeditionVol. 14, No. 1 (2019)spa
dc.relation.citationendpage192spa
dc.relation.citationissue1 (2019)spa
dc.relation.citationstartpage181spa
dc.relation.citationvolume14spa
dc.relation.citesMena Lopez, N. O., Ortegón Diaz, M. A., Gonzalez Delgado, A. D., Garcia, J. B., Barajas Solano, A. F., Lavecchia, R. y Zuorro, A. (2019). Effect of flocculation on lipid extraction from Chlorella Vulgaris UTEX 1803 using response surface methodology. Journal of Engineering Science and Technology, 14(1), 193–206. http://jestec.taylors.edu.my/Vol%2014%20issue%201%20February%202019/14_1_13.pdf
dc.relation.ispartofjournalJournal of Engineering Science and Technologyspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalChlorella vulgariseng
dc.subject.proposalFlocculationeng
dc.subject.proposalLipid extractioneng
dc.subject.proposalMicroalgaeeng
dc.subject.proposalSedimentationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem