Mostrar el registro sencillo del ítem
Computer-aided environmental and exergy analyses of a large-scale production of chitosan microbeads modified with TiO2 nanoparticles
dc.contributor.author | Meramo, Samir | |
dc.contributor.author | Urbina-Suarez, Nestor Andres | |
dc.contributor.author | González-Delgado, Angel Darío | |
dc.date.accessioned | 2021-10-30T20:09:31Z | |
dc.date.available | 2021-10-30T20:09:31Z | |
dc.date.issued | 2019-11-10 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/519 | |
dc.description.abstract | Chitosan is a biopolymer that has emerged as a useful material with applications in sectors such as medicine, food industry, water treatment systems, among others. This biomaterial is synthesized from shrimp exoskeleton, becoming an alternative of waste valorization. Chitosan can be used as main feedstock for production of bio-adsorbents modified with nanoparticles for pollution removal purposes. In this work, an environmental assessment and exergy analysis of a large-scale production of chitosan microbeads modified with TiO2 nanoparticles were developed with the aim of evaluating potential environmental impacts and energy/exergy performance. Aspen Plus ® software was used to develop process which allows quantification of extended mass and energy flows, property estimation, calculation of physical exergy flows, among others. The environmental evaluation was performed using the Waste Reduction Algorithm through the WAR GUI software. Environmental results showed that the presence of monovalent alcohols (propanol and ethanol) increased environmental effects related to the Photochemical Oxidation Potential category. From toxicological viewpoint, titanium tetra-isopropoxide affected Human Toxicity by Ingestion and Terrestrial Toxicity categories. Thought exergy analysis was identified that Centrifugation 2 is the process unit with highest irreversibilities, and also was founded that the overall exergy efficiency of the process was 0.0439%. These findings suggested that the proposed design requires the application of process improvement strategies in order to obtain better energy performance. | eng |
dc.format.extent | 10 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Journal of Cleaner Production | spa |
dc.relation.ispartof | Journal of Cleaner Production ISSN: 0959-6526, 2019 vol:237 fasc: págs: 1 - 10, DOI:10.1016/j.jclepro.2019.117804 | |
dc.rights | 2019 Elsevier Ltd. All rights reserved. | eng |
dc.source | https://www.sciencedirect.com/science/article/abs/pii/S0959652619326642?via%3Dihub#! | spa |
dc.title | Computer-aided environmental and exergy analyses of a large-scale production of chitosan microbeads modified with TiO2 nanoparticles | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Alonso-Farinas, B., Gallego-Schmid, A., Haro, P., Azapagic, A., 2018. Environmental ~ assessment of thermo-chemical processes for bio-ethylene production in comparison with bio-chemical and fossil-based ethylene. J. Clean. Prod. 202, 817e829. https://doi.org/10.1016/j.jclepro.2018.08.147. | spa |
dcterms.references | Ansarinasab, H., Mehrpooya, M., Sadeghzadeh, M., 2019. An exergy-based investigation on hydrogen liquefaction plant-exergy , exergoeconomic , and exergoenvironmental analyses. J. Clean. Prod. 210, 530e541. https://doi.org/10.1016/ j.jclepro.2018.11.090. | spa |
dcterms.references | Antonino, R.S.C.M.D.Q., Fook, B.R.P.L., Lima, V.A.D.O., Rached, R. I.D.F., Lima, E.P.N., Lima, R.J.D.S., Covas, C.A.P., Fook, M.V.L., 2017. Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar. Drugs 15, 1e12. https://doi.org/10.3390/md15050141. | spa |
dcterms.references | Askari, M.B., Tavakoli Banizi, Z., Seifi, M., Bagheri Dehaghi, S., Veisi, P., 2017. Synthesis of TiO2 nanoparticles and decorated multi-wall carbon nanotube (MWCNT) with anatase TiO2 nanoparticles and study of optical properties and structural characterization of TiO2/MWCNT nanocomposite. Optik 149, 447e454. https://doi.org/10.1016/j.ijleo.2017.09.078. | spa |
dcterms.references | Azapagic, a, Clift, R., 1999. The application of life cycle assessment to process optimisation. Comput. Chem. Eng. 23, 1509e1526. https://doi.org/10.1016/ S0098-1354(99)00308-7. | spa |
dcterms.references | Bahadori, F., Nalband Oshnuie, M., 2019. Exergy analysis of indirect dimethyl ether production process. Sustain. Energy Technol. Assess. 31, 142e145. https://doi. org/10.1016/j.seta.2018.12.025. | spa |
dcterms.references | Bait, O., 2019. Exergy, environ-economic and economic analyses of a tubular solar water heater assisted solar still. J. Clean. Prod. 212, 630e646. https://doi.org/10. 1016/j.jclepro.2018.12.015. | spa |
dcterms.references | Carvajal, J.C., Gomez, A., Cardona, C.A., 2016. Comparison of lignin extraction pro- cesses: economic and environmental assessment. Bioresour. Technol. 214, 468e476. https://doi.org/10.1016/j.biortech.2016.04.103. | spa |
dcterms.references | Choi, W., Ooka, R., Shukuya, M., 2018. Exergy analysis for unsteady-state heat conduction. Int. J. Heat Mass Transf. 116, 1124e1142. https://doi.org/10.1016/j. ijheatmasstransfer.2017.09.057. | spa |
dcterms.references | El-Halwagi, M.M., 2012. Sustainable Design through Process Integration: Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Profitability Enhancement. https://doi.org/10.1016/B978-1-85617- 744-3.00001-1. | spa |
dcterms.references | Fernandes Mosquim, R., De Oiliveira Junior, S., Mady Keutenedjian, C., 2018. Modelling the exergy behavior of sao paulo state in Brazil. J. Clean. Prod. 197, 643e655. https://doi.org/10.1016/j.jclepro.2018.06.235. | spa |
dcterms.references | Haider, J., Anbari, A., Corre, O.Le, Ferrao, P., 2017. Exploring potential environmental ~ applications of TiO2 nanoparticles. Energy Procedia 119, 332e345. https://doi. org/10.1016/j.egypro.2017.07.117. | spa |
dcterms.references | Hernandez, V., Romero-García, J.M., D avila, J.A., Castro, E., Cardona, C.A., 2014. Techno-economic and environmental assessment of an olive stone based biorefinery. Resour. Conserv. Recycl. 92, 145e150. https://doi.org/10.1016/j. resconrec.2014.09.008. | spa |
dcterms.references | Herrera, R., Salgado, J., Peralta, Y., Gonzalez, A., 2017. Environmental evaluation of a palm-based biorefinery under north-Colombian conditions. Chem. Eng. Trans. 57, 193e198 | spa |
dcterms.references | Kalaivani, R., Maruthupandy, M., Muneeswaran, T., Beevi, A.H., Anand, M., Ramakritinan, C.M., Kumaraguru, A.K., 2018. Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Front. Lab. Med. 2, 30e35. https://doi.org/10.1016/j.flm.2018.04.002 | spa |
dcterms.references | Lampinen, M.J., Wiksten, R., Sarvi, A., Saari, K., Penttinen, M., 2011. Minimization of exergy losses in combustion processes with an illustration of a membrane combustion. Bioenergy Technol. 133e139. | spa |
dcterms.references | Li, Q., Jia, R., Shao, J., He, Y., 2019. Photocatalytic degradation of amoxicillin via TiO2 nanoparticle coupling with a novel submerged porous ceramic membrane reactor. J. Clean. Prod. 209, 755e761. https://doi.org/10.1016/j.jclepro.2018.10. 183 | spa |
dcterms.references | Martínez Gonz alez, A., Silva Lora, E.E., Escobar Palacio, J.C., 2019. Syngas production from oil sludge gasification and its potential use in power generation systems: an energy and exergy analysis. Energy 169, 1175e1190. https://doi.org/10.1016/j. energy.2018.11.087. | spa |
dcterms.references | Mehdizadeh-Fard, M., Pourfayaz, F., 2019. Advanced exergy analysis of heat exchanger network in a complex natural gas refinery. J. Clean. Prod. 206, 670e687. https://doi.org/10.1016/j.jclepro.2018.09.166. | spa |
dcterms.references | Meramo-Hurtado, S., Ojeda-Delgado, K., Sanchez-Tuir an, E., 2018. Environmental assessment of a Biorefinery : case study of a purification stage in biomass gasification. Contemp. Eng. Sci. 11, 113e120. | spa |
dcterms.references | Meramo, S.I., Bonfante, H., De Avila-Montiel, G., Herrera-Barros, A., GonzalezDelgado, A., 2018. Environmental assessment of a large-scale production of TiO2 nanoparticles via green chemistry. Chem. Eng. Trans. 70, 1063e1068. https://doi.org/10.3303/CET1870178. | spa |
dcterms.references | Moncada, J., Tamayo, J.A., Cardona, C.A., 2014. Integrating first, second, and third generation biorefineries: incorporating microalgae into the sugarcane biorefinery. Chem. Eng. Sci. 118, 126e140. https://doi.org/10.1016/j.ces.2014.07.035 | spa |
dcterms.references | Moreno-Sader, K., Meramo-Hurtado, S.I., Gonzalez-Delgado, A.D., 2019. Computer- aided environmental and exergy analysis as decision-making tools for selecting bio-oil feedstocks. Renew. Sustain. Energy Rev. 112, 42e57. https://doi.org/10. 1016/j.rser.2019.05.044. | spa |
dcterms.references | Nakamatsu, J., 2012. La quitosana. Rev. Química PUCP 10e12. | spa |
dcterms.references | Ojeda, K.A., S anchez, E.L., Suarez, J., Avila, O., Quintero, V., El-Halwagi, M., Kafarov, V., 2011. Application of computer-aided process engineering and exergy analysis to evaluate different routes of biofuels production from lignocellulosic biomass. In: Industrial and Engineering Chemistry Research, pp. 2768e2772. https://doi.org/10.1021/ie100633g | spa |
dcterms.references | Papong, S., Rewlay-ngoen, C., Itsubo, N., Malakul, P., 2017. Environmental life cycle assessment and social impacts of bioethanol production in Thailand. J. Clean. Prod. 157, 254e266. https://doi.org/10.1016/j.jclepro.2017.04.122. | spa |
dcterms.references | Peralta-Ruiz, Y., Gonzalez-Delgado, A.D., Kafarov, V., 2013. Evaluation of alternatives for microalgae oil extraction based on exergy analysis. Appl. Energy 101, 226e236. | spa |
dcterms.references | Perez, D.L., Luna, E.J., Peralta-ruiz, Y.Y., 2016. Techno-economic sensitivity of biohydrogen production from empty palm fruit bunches under Colombian conditions. Chem. Eng. Trans. 52, 1117e1122. https://doi.org/10.3303/CET1652187. | spa |
dcterms.references | Petrescu, L., Cormos, C.C., 2015. Waste reduction algorithm applied for environmental impact assessment of coal gasification with carbon capture and storage. J. Clean. Prod. 104, 220e235. https://doi.org/10.1016/j.jclepro.2014.08.064. | spa |
dcterms.references | Ramirez-Cando, L.J., Spugnoli, P., Matteo, R., Bagatta, M., Tavarini, S., Foschi, L., Lazzeri, L., 2017. Environmental assessment of flax straw production for nonwood pulp mills. Chem. Eng. Trans. 58, 787e792. https://doi.org/10.3303/ CET1758132. | spa |
dcterms.references | Ramírez, Y., Kraslawski, A., Cisternas, L.A., 2019. Decision-support framework for the environmental assessment of water treatment systems. J. Clean. Prod. 225, 599e609. https://doi.org/10.1016/j.jclepro.2019.03.319. | spa |
dcterms.references | Rathnayaka, S., Khan, F., Amyotte, P., 2014. Risk-based process plant design considering inherent safety. Saf. Sci. 70, 438e464. https://doi.org/10.1016/j.ssci. 2014.06.004. | spa |
dcterms.references | Restrepo-Serna, D.L., Martínez-Ruano, J.A., Cardona-Alzate, C.A., 2018. Energy efficiency of biorefinery schemes using sugarcane bagasse as raw material. Energies 11, 3474. https://doi.org/10.3390/en11123474. | spa |
dcterms.references | Rinaudo, M., 2006. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603e632. https://doi.org/10.1016/j.progpolymsci.2006.06.001. | spa |
dcterms.references | Smith, R.L., Ruiz-Mercado, G.J., Gonzalez, M.A., 2015. Using GREENSCOPE indicators for sustainable computer-aided process evaluation and design. Comput. Chem. Eng. 81, 272e277. https://doi.org/10.1016/j.compchemeng.2015.04.020. | spa |
dcterms.references | Vargas, M.A., Rodríguez-Paez, J.E., 2017. Amorphous TiO2 nanoparticles: synthesis and antibacterial capacity. J. Non-Cryst. Solids 459, 192e205. https://doi.org/10.1016/j.jnoncrysol.2017.01.018. | spa |
dcterms.references | Yang, K., Zhu, N., Ding, Y., Chang, C., Wang, D., Yuan, T., 2019. Exergy and exergoeconomic analyses of a combined cooling, heating , and power (CCHP) system based on dual-fuel of biomass and natural gas. J. Clean. Prod. 206, 893e906. https://doi.org/10.1016/j.jclepro.2018.09.251. | spa |
dcterms.references | Zhang, H., Yun, S., Song, L., Zhang, Y., Zhao, Y., 2017. The preparation and characterization of chitin and chitosan under large-scale submerged fermentation level using shrimp by-products as substrate. Int. J. Biol. Macromol. 96, 334e339. https://doi.org/10.1016/j.ijbiomac.2016.12.017. | spa |
dc.identifier.doi | 10.1016/j.jclepro.2019.117804 | |
dc.publisher.place | Reino Unido | spa |
dc.relation.citationedition | Vol. 237 , No. 117804 (2019) | spa |
dc.relation.citationendpage | 10 | spa |
dc.relation.citationissue | 117804 (2019) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 237 | spa |
dc.relation.cites | Meramo-Hurtado, S., Urbina-Suaréz, N. y González-Delgado, Á. (2019). Computer-aided environmental and exergy analyses of a large-scale production of chitosan microbeads modified with TiO2 nanoparticles. Journal of Cleaner Production, 237, Artículo 117804. https://doi.org/10.1016/j.jclepro.2019.117804 | |
dc.relation.ispartofjournal | Journal of Cleaner Production | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.subject.proposal | Environmental assessment | eng |
dc.subject.proposal | Exergy analysis | eng |
dc.subject.proposal | Process simulation | eng |
dc.subject.proposal | Chitosan microbeads | eng |
dc.subject.proposal | Nanoparticles | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_16ec | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Ambiente y Vida - GIAV [124]