dc.contributor.author | Acevedo Paez, Juan Camilo | |
dc.contributor.author | González-Delgado, Angel Darío | |
dc.contributor.author | Urbina-Suarez, Nestor Andres | |
dc.contributor.author | Rangel-Basto, Yeily Adriana | |
dc.contributor.author | Ferreira, Mary | |
dc.date.accessioned | 2021-10-30T14:48:08Z | |
dc.date.available | 2021-10-30T14:48:08Z | |
dc.date.issued | 2020-05-21 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/505 | |
dc.description.abstract | The search for innovation and biotechnological strategies in the biodiesel production chain have become a topic of interest for scientific community owing the importance of renewable energy sources. This work aimed to implement an enzymatic transesterification process to obtain biodiesel from waste frying oil (WFO). The transesterification was performed by varying reaction times (8 h, 12 h and 16 h), enzyme concentrations of lipase XX 25 split (14%, 16% and 18%), pH of reaction media (6, 7 and 8) and reaction temperature (35, 38 and 40 ◦C) with a fixed alcohol–oil molar ratio of 3:1. The optimum operating conditions were selected to quantify the amount of fatty acid methyl esters (FAMEs) generated. The highest biodiesel production was reached with an enzyme concentration of 14%, reaction time of 8 h, pH of 7 and temperature of 38 ◦C. It was estimated a FAMEs production of 42.86% for the selected experiment; however, best physicochemical characteristics of biodiesel were achieved with an enzyme concentration of 16% and reaction time of 8 h. Results suggested that enzymatic transesterification process was favorable because the amount of methyl esters obtained was similar to the content of fatty acids in the WFO. | eng |
dc.format.extent | 16 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Applied Sciences | spa |
dc.relation.ispartof | Applied Sciences (Switzerland) ISSN: 2076-3417, 2020 vol:10 fasc: págs: 1 - 16, DOI:10.3390/app10103566 | |
dc.rights | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). | eng |
dc.source | https://www.mdpi.com/2076-3417/10/10/3566 | spa |
dc.title | Enzymatic Transesterification of Waste Frying Oil from Local Restaurants in East Colombia Using a Combined Lipase System | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Tantawy, A.H.; Abo-riya, M.A.; Abdallah, S.M.; El-dougdoug, W. Novel cationic surfactants based on waste frying oil for cleaning water surface from petroleum films: Synthesis, antimicrobial and surface properties. J. Mol. Liq. 2018, 253, 36–44. | spa |
dcterms.references | Yao, K.; Jo-han, N.; Tung, C.; Shiung, S.; Tong, W. Biodiesel process intensification through catalytic enhancement and emerging reactor designs: A critical review. Renew. Sustain. Energy Rev. 2019, 116, 109399. | spa |
dcterms.references | Gozmen, B.; Uludamar, E.; Özcanli, M. Evaluation of energetic-exergetic and sustainability parameters of biodiesel fuels produced from palm oil and opium poppy oil as alternative fuels in diesel engines. Fuel 2019, 258, 116116. | spa |
dcterms.references | Hasan, M.; Rahman, M. Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review. Renew. Sustain. Energy Rev. 2017, 74, 938–948. | spa |
dcterms.references | Lit, Z.; Hua, Y.; San, Y.; Kansedo, J.; Mubarak, N.M.; Ghasemi, M.; Omar, M. Life cycle assessment of waste cooking oil for biodiesel production using waste chicken eggshell derived CaO as catalyst via transesterification. Biocatal. Agric. Biotechnol. 2019, 21, 101317. | spa |
dcterms.references | Murcia Ordoñez, B.; Chaves, L.C.; Rodríguez-Pérez, W.; Andredy Murcia, M.; Alvarado, E.R. Caracterización de biodiesel obtenido de aceite residual de cocina. Rev. Colomb. De Biotecnol. 2013, 15, 61–70. | spa |
dcterms.references | Bulla Pereira, E.A. Diseño del Proceso de Producción del Biodiesel a Partir de Aceites de Fritura. Ph.D. Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2014. | spa |
dcterms.references | Acevedo, J.C.; Urbina, N.A.; Acevedo, A.Z.; Becerra, L.C.; Arenas, E. Analysis of the biodiesel production yield from waste frying oil. J. Phys. Conf. Ser. 2018, 1126, 012006. | spa |
dcterms.references | Dávila Barrera, J.D.; Cortés López, C.C. Obtención de Biodiesel a Partir de Aceite de Fritura; Universidad Libre de Colombia: Bogotá, Colombia, 2017. | spa |
dcterms.references | Moazeni, F.; Chen, Y.; Zhang, G. Enzymatic transesterification for biodiesel production from used cooking oil, a review. J. Clean. Prod. 2019, 216, 117–128. | spa |
dcterms.references | Panadare, D.; Rathod, V. Applications of Waste Cooking Oil Other Than Biodiesel: A Review. Iran. J. Chem. Eng. 2015, 12, 55–76. | spa |
dcterms.references | Tan, J.; Zhang, S.; Lu, T.; Li, R.; Zhong, T.; Zhu, X. Design and synthesis of ethoxylated esters derived from waste frying oil as anti-ultraviolet and ef fi cient primary plasticizers for poly (vinyl chloride). J. Clean. Prod. 2019, 229, 1274–1282. | spa |
dcterms.references | Acevedo-Paez, J.; Urbina-Suarez, N.; Acevedo-Rodríguez, A.Z.; Becerra-Orozco, L.C.; Mendez-Nuñez, J. El aceite residual de fritura como fuente de energía asequible y poco contaminante. In Semana de Divulgación Científica; Universidad de Santander UDES (Colombia): Santander, Colombia, 2017; pp. 1–8. | spa |
dcterms.references | Marchini, J.; Teleken, J.; De Cinque, V.; Da Silva, C. Biodiesel from waste frying oils: Methods of production and purification. Energy Convers. Manag. 2019, 184, 205–218. | spa |
dcterms.references | Abdelkareem, M.A.; Olabi, A.G. Fuzzy modeling and parameters optimization for the enhancement of biodiesel production from waste frying oil over montmorillonite clay K-30. Sci. Total Environ. 2019, 666, 821–827. | spa |
dcterms.references | Hussein, A.; Durak, E. Study of the tribological properties the mixture of soybean oil and used (waste) frying oil fatty acid methyl ester under boundary lubrication conditions. Renew. Energy 2020, 145, 1730–1747. | spa |
dcterms.references | Pascoal, C.; Oliveira, A.; Figueiredo, D.; Assuncao, J. Optimization and kinetic study of ultrasonic-mediated in situ transesterification for biodiesel production from the almonds of Syagrus cearensis. Renew. Energy 2020, 147, 1815–1824. | spa |
dcterms.references | Vieira, M.; Gil, B.; da Costa Marques, L.; Soares, A.; Vasconcelos, M. Comparative study of NOx emissions of biodiesel-diesel blends from soybean, palm and waste frying oils using methyl and ethyl transesterification routes. Fuel 2017, 194, 144–156. | spa |
dcterms.references | Berrios, M.; Martín, M.A.; Chica, A.F.; Martín, A. Study of esterification and transesterification in biodiesel production from used frying oils in a closed system. Chem. Eng. Res. Des. 2010, 160, 473–479. | spa |
dcterms.references | Al-Hamamre, Z.; Yamin, J. Parametric study of the alkali catalyzed transesterification of waste frying oil for Biodiesel production. Energy Convers. Manag. 2014, 79, 246–254. | spa |
dcterms.references | Cordero-ravelo, V.; Schallenberg-rodriguez, J. Biodiesel production as a solution to waste cooking oil (WCO) disposal. Will any type of WCO do for a transesteri fi cation process? A quality assessment. J. Environ. Manag. 2018, 228, 117–129. | spa |
dcterms.references | Dizge, N.; Aydiner, C.; Imer, D.Y.; Bayramoglu, M.; Tanriseven, A.; Keskinler, B. Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer. Bioresour. Technol. 2009, 100, 1983–1991. | spa |
dcterms.references | Lopresto, C.G.; Naccarato, S.; Albo, L.; Paola MGDe Chakraborty, S.; Curcio, S.; Calabrò, V. Enzymatic transesterification of waste vegetable oil to produce biodiesel. Ecotoxicol. Environ. Saf. 2015, 121, 229–235. | spa |
dcterms.references | Poppe, J.K.; Matte, C.R.; Fernandez-lafuente, R.; Rodrigues, R.C.; Antônio, M.; Ayub, Z. Transesterification of Waste Frying Oil and Soybean Oil by Combi-lipases Under Ultrasound-Assisted Reactions. Appl. Biochem. Biotechnol. 2018, 186, 576–589. | spa |
dcterms.references | Souissi, Y.; Alouini, M.; Mnif, W. Chemical and Biological Investigation of Organic Wastes of Frying Oils and Beef Fats: Valorization for Biodiesel Production. J. Chem. 2018, 2018, 6248047. | spa |
dcterms.references | Kumar, D.; Das, T.; Shekher, B.; Rene, E.R.; Verma, B. Biodiesel production from hybrid non-edible oil using bio-support beads immobilized with lipase from Pseudomonas cepacia. Fuel 2019, 255, 115801. | spa |
dcterms.references | Phan, A.N.; Phan, T.M. Biodiesel Production from Waste Cooking Oils. Fuel 2008, 87, 3490–3496. | spa |
dcterms.references | Worthington Biochemical Corporation. Introduction to Enzymes. In Manual of Clinical Enzyme Measurements; Worthington Biochemical Corporation: Freehold, NJ, USA, 1972; p. 54. | spa |
dcterms.references | Rangel-Basto, Y.A.; García-Ochoa, I.E.; Suárez-Gelvez, J.H.; Zuorro, A.; Barajas-Solano, A.F.; Urbina-Suárez, N.A. The Effect of Temperature and Enzyme Concentration in the Transesterification Process of Synthetic Mecroalgae Oil. Chem. Eng. Trans. 2018, 64, 331–336. | spa |
dcterms.references | Arumugam, A.; Ponnusami, V. Production of biodiesel by enzymatic transesterification of waste sardine oil and evaluation of its engine performance. Heliyon 2017, 3, e00486. | spa |
dcterms.references | Aziz, M.; Husson, F.; Kermasha, S. Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor. Int. J. Food Sci. 2015, 2015, 594238. | spa |
dcterms.references | Park, Y.; Pastore, G.; Almeida, M. Hydrolysis of soybean oil by a combined lipase system. J. Am. Oil Chem. Soc. 2007, 23, 1725–1731. | spa |
dcterms.references | Bezbradica, D.; Karalazic, I.; Ognjanovic, N.; Mijin, D.; Siler-Marinkovic, S.; Knezevic, Z. Studies on the specificity of Candida rugosa lipase catalyzed esterification reactions in organic media. J. Serb. Chem. Soc. 2006, 71, 31–41. | spa |
dcterms.references | Pedro, K.; Parreira, J.; Correia, I.; Henriques, C.; Langone, M. Enzymatic biodiesel synthesis from acid oil using a lipase mixture. Química Nova 2018, 41, 284–291. | spa |
dcterms.references | Fernandez-Lafuente, R. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J. Mol. Catal. B Enzym. 2010, 62, 197–212. | spa |
dcterms.references | Devanesan, M.G.; Viruthagiri, T.; Sugumar, N. Transesterification of Jatropha oil using immobilized Pseudomonas fluorescens. Afr. J. Biotechnol. 2007, 6, 2497–2501. | spa |
dcterms.references | Baadhe, R.; Potumarthi, R.; Gupta, V. Lipase-Catalyzed Biodiesel Production: Technical Challenges. In Bioenergy Research: Advances and Applications; Elsevier: Amsterdam, The Netherlands, 2014; pp. 119–129. | spa |
dcterms.references | Acevedo-Páez, J.C.; Urbina-Suárez, N.A.; Acevedo-Rodríguez, A.Z.; Becerra-Orozco, L.C. Study of the production of biodiesel by enzymatic and chemical processes from used cooking oil. Aibi Rev. De Investig. Adm. E Ing. 2019, 7, 20–25. | spa |
dcterms.references | Acevedo-Paez, J.; Urbina, N.; Acevedo, A.Z.; Becerra, L. Physicochemical study of used frying oil as feedstock for the production of biodiesel. J. Phys. Conf. Ser. 2019, 1388, 8. | spa |
dcterms.references | Ramírez Cleves, N.P. Estudio para la Implementación de Aceite de Cocina Residual de una Cadena de Restaurantes Para la Producción de Biodiesel en Bogotá. Bachelor’s Thesis, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia, 2017. | spa |
dcterms.references | Herrera, J.; Velez, J. Caracterizacion y Aprovechamiento del Aceite Residual de Frituras Para la Obtencion de un Combustible (Biodiesel). Ph.D. Thesis, Universidad Tecnológica de Pereira, Pereira, Colombia, 2008. | spa |
dcterms.references | Sánchez Moreno, N.B.; Sarmiento Lozano, D.C. Propuesta de instalación de un punto de acopio de aceite de cocina usado en la zona de comidas de la plaza de mercado de Sogamoso “Sogabastos”. Specialization’s Thesis, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia, 2016. | spa |
dcterms.references | Eze, V.C.; Phan, A.N.; Harvey, A.P. Intensified one-step biodiesel production from high water and free fatty acid waste cooking oils. Fuel 2018, 220, 567–574. | spa |
dcterms.references | Yahida, N.; Ngadi, N.; Jusoh, M.; Amirah, N.; Halim, A. Characterization and parametric study of mesoporous calcium titanate catalyst for transesterification of waste cooking oil into biodiesel. Energy Convers. Manag. 2016, 129, 275–283. | spa |
dcterms.references | Tacias-Pascacio, V.G.; Virgen-Ortíz, J.J.; Jiménez-Pérez, M.; Yates, M.; Torrestiana-Sanchez, B.; Rosales-Quintero, A.; Fernandez-Lafuente, R. Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil: Critical role of the immobilization support. Fuel 2017, 200, 1–10. | spa |
dcterms.references | Mansir, N.; Teo, S.; Rashid, U.; Saiman, M.; Ping, Y.; Alsultan, G.; Taufiq-Yap, Y.H. Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review. Renew. Sustain. Energy Rev. 2018, 82, 3645–3655. | spa |
dcterms.references | Fillieres, R.; Benjelloun-Mlayeh, B.; Delmas, M. Ethanolysis of rapeseed oil: Quantitation of ethyl esters, mono-, di- and triglycerides and glycerol by high-performance size-exclusion chromatography. J. Am. Oil Chem. Soc. 1995, 72, 427–432. | spa |
dcterms.references | Lee, J.; Kwon, C.; Kang, J.; Park, C.; Tae, B.; Kim, S. Biodiesel Production from Various Oils Under Supercritical Fluid Conditions by Candida antartica Lipase B Using a Stepwise Reaction Method. Biotechnol. Appl. Biochem. 2009, 156, 454–464. | spa |
dcterms.references | Uzun, B.; Kılıç, M.; Özbay, N.; Pütün, A.; Pütün, E. Biodiesel production from waste frying oils: Optimization of reaction parameters and determination of fuel properties Bas. Energy 2012, 44, 347–351. | spa |
dcterms.references | Shah, S.; Gupta, M.N. Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem. 2007, 42, 409–414. | spa |
dcterms.references | Maceiras, R.; Vega, M.; Costa, C.; Ramos, P.; Márquez, M.C. Effect of methanol content on enzymatic production of biodiesel from waste frying oil. Fuel 2009, 88, 2130–2134. | spa |
dcterms.references | Jilse, S.; Chandrasekharan, M.; Arockiasamy, S. A comparative study between chemical and enzymatic transesterification of high free fatty acid contained rubber seed oil for biodiesel production. Cogent Eng. 2016, 3, 1–12. | spa |
dcterms.references | Cavalcanti-oliveira, E.A.; Rufino, P.; Pec, A.; Alexandre, D.; Aranda, G.; Guimar, D.M. Study of Soybean Oil Hydrolysis Catalyzed by Thermomyces lanuginosus Lipase and Its Application to Biodiesel Production via Hydroesterification. Enzym. Res. 2011, 2011, 1–8. | spa |
dcterms.references | Tran, D.; Chen, C.; Chang, J. Continuous biodiesel conversion via enzymatic transesterification catalyzed by immobilized Burkholderia lipase in a packed-bed bioreactor. Appl. Energy 2016, 168, 340–350. | spa |
dcterms.references | Azócar-Ulloa, L.H. Proceso Enzimático Para la Producción de Metil Ésteres de Ácidos Grasos Utilizando Aceites Residuales de Fritura en Mezcla con Aceite de Raps Como Materia Prima. Ph.D. Thesis, Universidad de la Frontera, Temuco, Chile, 2010. | spa |
dcterms.references | Regil, R.; De Sandoval, G. Biocatalysis for Biobased Chemicals. Biomolecules 2013, 3, 812–847. | spa |
dcterms.references | Wang, F.; Guo, C.; Yang, L.; Liu, C. Magnetic mesoporous silica nanoparticles: Fabrication and their laccase immobilization performance. Bioresour. Technol. 2010, 101, 8931–8935. | spa |
dcterms.references | Lee, S.U.; Jung, K.; Park, G.W.; Seo, C.; Hong, Y.K.; Hong, W.H.; Chang, H.N. Bioprocessing aspects of fuels and chemicals from biomass. Korean J. Chem. Eng. 2012, 29, 831–850. | spa |
dcterms.references | Kiss, A.A.; Ignat, R. Enhanced methanol recovery and glycerol separation in biodiesel production – DWC makes it happen. Appl. Energy 2012, 99, 146–153. | spa |
dcterms.references | Encinar, J.M.; González, J.F.; Rodríguez-Reinares, A. Biodiesel from Used Frying Oil. Variables Affecting the Yields and Characteristics of the Biodiesel. Ind. Eng. Chem. Res. 2005, 44, 5491–5499. | spa |
dcterms.references | Fajar, B.; Sukarno, A. Experimental Study of Additives on Viscosity biodiesel at Low Temperature Experimental Study of Additives on Viscosity biodiesel at Low Temperature. Iop Conf. Ser. Mater. Sci. Eng. 2015, 88, 1–8. | spa |
dcterms.references | Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H. Corrosion mechanism of copper in palm biodiesel. Corros. Sci. 2013, 67, 50–59. | spa |
dcterms.references | Haseed, A.; Masjuki, H.; Ann, L.; Fazal, M. Corrosion characteristics ofcopper and leaded bronze in palm biodiesel. Fuel Process. Technol. 2010, 91, 329–334. | spa |
dcterms.references | Avellaneda Vargas, F.A. Producción y Caracterización de Biodiesel de Palma y de Aceite Reciclado Mediante un Proceso Batch y un Proceso Continuo con un Reactor Helicoidal. Ph.D. Thesis, Universitat Rovira I Virgili, Tarragona, Spain, 2010. | spa |
dcterms.references | Thi, T.; Bazile, J.; Bessiéres, D. Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges. Energie 2018, 11, 1–14. | spa |
dcterms.references | Nurdin, M.; Fatma, F.; Natsir, M.; Wibowo, D. Characterization of methyl ester compound of biodiesel from industrial liquid waste of crude palm oil processing. Anal. Chem. Res. 2017, 12, 1–9 | spa |
dcterms.references | Touqeer, T.; Mumtaz, M.W.; Mukhtar, H.; Irfan, A.; Akram, S.; Shabbir, A.; Rashid, U.; Nehdi, I.A. Fe3O4 -PDA-Lipase as Surface Functionalized Nano Biocatalyst for the Production of Biodiesel Using Waste Cooking Oil as Feedstock: Characterization and Process Optimization. Energies 2020, 13, 177. | spa |
dcterms.references | Nde, D.B.; Astete, C.; Boldor, D. ESolvent-free, enzyme-catalyzed biodiesel production from mango, neem, and shea oils via response surface methodology. Amb Express 2015, 5, 1–12 | spa |
dcterms.references | Charpe, T.W.; Rathod, V.K. Biodiesel production using waste frying oil. Waste Manag. 2011, 31, 85–90. | spa |
dc.identifier.doi | 10.3390/app10103566 | |
dc.publisher.place | Suiza | spa |
dc.relation.citationedition | Vol. 10, No. 10 (2020) | spa |
dc.relation.citationendpage | 16 | spa |
dc.relation.citationissue | 10 (2020) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 10 | spa |
dc.relation.cites | Ferreira Vela, M. A., Acevedo-Páez, J. C., Urbina-Suárez, N., Rangel Basto, Y. A. y González-Delgado, Á. D. (2020). Enzymatic Transesterification of Waste Frying Oil from Local Restaurants in East Colombia Using a Combined Lipase System. Applied Sciences, 10(10), 1–16. https://doi.org/10.3390/app10103566 | |
dc.relation.ispartofjournal | Applied Sciences (Switzerland) | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | Biodiesel | eng |
dc.subject.proposal | Transesterification | eng |
dc.subject.proposal | Waste frying oil | eng |
dc.subject.proposal | Biotechnology | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |