Impact of soil use on aggregate stability and its relationship with soil organic carbon at two different altitudes in the Colombian Andes
Impacto del uso del suelo sobre la estabilidad de agregados y su relación con el carbono orgánico en dos pisos altitudinales en Los Andes de Colombia
dc.contributor.author | Valenzuela Balcázar, Ibonne Geaneth | |
dc.contributor.author | Visconti Moreno, Efrain Francisco | |
dc.date.accessioned | 2021-10-29T21:45:12Z | |
dc.date.available | 2021-10-29T21:45:12Z | |
dc.date.issued | 2019-09-01 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/495 | |
dc.description.abstract | The stability of soil aggregates depends on the organic matter, and the soil use and management can affect the soil organic matter (SOM) content. Therefore, it is necessary to know the relationship between aggregate stability and the content of SOM in different types of soil use at two different altitudes of the Colombian Andes. This study examined the conditions of soil aggregate stability expressed as a distribution of the size classes of stable aggregates (SA) and of the mean weighted diameter of the stable aggregates (MWD). To correlate these characteristics with the soil organic carbon (OC), we measured the particulate organic matter pool (POC), the OC associated with the mineral organic matter pool (HOC), the total organic carbon content (TOC), and the humification rate (HR). Soils were sampled at two altitudes: 1) Humic Dystrudepts in a cold tropical climate (CC) with three plots: tropical mountain rainforest, pastures, and crops; 2) Fluvaquentic Dystrudepts in a warm tropical climate (WC) with three plots: tropical rainforest, an association of oil palm and pastures, and irrigated rice. Soils were sampled at three depths: 0-5, 5-10 and 10-20 cm. The physical properties, mineral particle size distribution, and bulk density were measured. The content of SA with size>2.36 mm was higher in the CC soil (51.48%) than in the WC soil (9.23%). The SA with size 1.18-2.36 mm was also higher in the CC soil (7.78%) than in the WC soil (0.62%). The SA with size 0.60-1.18 mm resulted indifferent. The SA with size between 0.30 and 0.60 mm were higher in the WC soil (13.95%) than in the CC soil (4.67%). The SA<0.30 mm was higher in the WC soil (72.56%) than in the CC soil (32.15%). It was observed that MWD and the SA>2.36 mm increased linearly with a higher POC, but decreased linearly with a higher HR. For the SA<0.30 mm, a linear decrease was observed at a higher POC, while it increased at a higher HR. | eng |
dc.description.abstract | La estabilidad de agregados del suelo depende de la materia orgánica y el uso y manejo del suelo puede afectar el contenido de materia orgánica (MOS) del mismo. Por lo tanto, es necesario conocer la relación entre la estabilidad de agregados y el contenido de MOS en diferentes tipos de uso del suelo a diferentes altitudes en Los Andes de Colombia. El presente estudio examinó las condiciones de estabilidad de agregados del suelo expresados como una distribución por tamaño de las clases de agregados estables (AE) y el diámetro medio ponderado (DMP) de agregados estables. Para relacionar estas características con el contenido de carbono orgánico del suelo (CO), se midieron la materia orgánica particulada (COP), el CO asociado con la materia orgánica mineral (COM), el contenido total de carbono orgánico (COT) y el índice de humificación (IH). Se realizaron muestreos de dos suelos de pisos altitudinales diferentes: 1) Un Humic Dystrudepts en clima frío (CF) con tres lotes: bosque natural, pastura y cultivos; 2) Un Fluvaquentic Dystrudepts en clima cálido (CC) con tres lotes: bosque natural, palma de aceite asociada con pastura y arroz con riego. Se muestreó el suelo a tres profundidades: 0 a 5, 5 a 10, y 10 a 20 cm. Se midieron las propiedades físicas, distribución por tamaño de la partícula mineral y densidad aparente. El contenido de AE con tamaño >2.36 mm fue mayor en el suelo de clima frío (51.48%) que en el de clima cálido (9.23%). Los AE de tamaño 1.18 a 2.36 mm fueron también mayores en clima frío (7.78%) que en clima cálido (0.62%). Los AE de tamaño 0.60 a 1.18 mm resultaron indiferentes. Los AE de tamaño entre 0.30 y 0.60 mm presentaron un contenido más alto en el suelo de clima cálido (13.95%) en comparación al de clima frío (4.67%). Los AE<0.30 mm fueron mayores en clima cálido (72.56%) con respecto al clima frío (32.15%). Se observó que el DMP y los AE>2.36 mm aumentaron linealmente con el contenido de COP más alto, pero disminuyeron linealmente con un IH más alto. Para los AE<0.30 mm se observa una disminución lineal a mayor COP, mientras que este aumenta a un IH más alto. | spa |
dc.format.extent | 11 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Agronomía Colombiana | spa |
dc.relation.ispartof | Agronomía Colombiana ISSN: 2357-3732, 2019 vol:37 fasc: 3 págs: 263 - 273, DOI:10.15446/agron.colomb.v37n3.77601 | |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. | eng |
dc.rights | Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License. | eng |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.source | https://revistas.unal.edu.co/index.php/agrocol/article/view/77601 | spa |
dc.title | Impact of soil use on aggregate stability and its relationship with soil organic carbon at two different altitudes in the Colombian Andes | eng |
dc.title | Impacto del uso del suelo sobre la estabilidad de agregados y su relación con el carbono orgánico en dos pisos altitudinales en Los Andes de Colombia | spa |
dc.type | Artículo de revista | spa |
dcterms.references | An, S., A. Mentler, H. Mayer, and W. Blum. 2010. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena 81, 226-233. Doi: 10.1016/j. catena.2010.04.002 | spa |
dcterms.references | Briedis, C., J. Moraes-Sá, E. Caires, J. Navarro, T. Massao-Inagaki, A. Boer, C. Quadros-Neto, A. Oliveira-Ferreira, L. Canalli, and J. Burkner-Dos Santos. 2012. Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system. Geoderma 170, 80-88. Doi: 10.1016/j.geoderma.2011.10.011 | spa |
dcterms.references | Bronick, C. and R. Lal. 2005. Soil structure and management: a review. Geoderma 124, 3-22. Doi: 10.1016/j.geoderma.2004.03.005 | spa |
dcterms.references | FAO, Food and Agriculture Organization of the United Nations. 2006. Guidelines for soil description. FAO, Rome. | spa |
dcterms.references | Figueiredo, C, D. Siqueira-Resck, and M. Carbone-Carneiro. 2010 Labile and stable fractions of soil organic matter under management systems and native Cerrado. Rev. Bras. Cienc. Solo 34, 907-916. Doi: 10.1590/S0100-06832010000300032 | spa |
dcterms.references | IGAC, Instituto Geográfico Agustín Codazzi. 2006a. Estudio general de suelos y zonificación de tierras del departamento Norte de Santander. Instituto Geográfico Agustín Codazzi, Bogota. | spa |
dcterms.references | IGAC, Instituto Geográfico Agustín Codazzi. 2006b. Métodos analíticos de laboratorio de suelos. Instituto Geográfico Agustín Codazzi, Bogota. | spa |
dcterms.references | Loss, A., E. Dos Santos, D. Schmitz, M. Da Veiga, C. Kurtz, and J. Comin. 2017. Atributos físicos do solo em cultivo de cebola sob sistemas de plantio direto e preparo convencional. Rev. Colomb. Cienc. Hort. 11(1), 105-113. Doi: 10.17584/ rcch.2017v11i1.6144 | spa |
dcterms.references | Lozano, Z., S. Cabrera, J. Peña, and M. Adams. 1997. Efecto de los sistemas de labranza sobre dos inceptisoles de los llanos occidentales de Venezuela. II. Propiedades físicas de los suelos. Revista Venesuelos, 5, 25-33. | spa |
dcterms.references | Lozano, Z., R. Hernández, and A. Ojeda. 2005. Manual de métodos para la evaluación de la calidad física, química y biológica de los suelos. Universidad Central de Venezuela, Maracay, Venezuela. | spa |
dcterms.references | Martínez, E., J. Fuentes, and E. Acevedo. 2008. Carbono orgánico y propiedades del suelo. J. Soil Sci. Plant Nutr. 8(1), 68-96. | spa |
dcterms.references | Moraes-Sa, J. and R. Lal. 2009. Stratification ratio of soil organic matter pools as an indicator of carbon sequestration in a tillage chronosequence on a Brazilian Oxisol. Soil Tillage Res. 133, 65-74. Doi: 10.1016/j.still.2008.09.003 | spa |
dcterms.references | Mujuru, L., A. Mureva, E. Velthorst, and M. Hoosbeek. 2013. Land use and management effects on soil organic matter fractions in Rhodic Ferralsols and Haplic Arenosols in Bindura and Shamva districts of Zimbabwe. Geoderma 209-210, 262-272. Doi: 10.1016/j.geoderma.2013.06.025 | spa |
dcterms.references | Nascente, A., Y. Li, and C. Costa-Crusciol. 2015. Soil aggregation, organic carbon concentration, and soil bulk density as affected by cover crop species in a no-tillage system. Rev. Bras. Ciênc. Solo 39, 871-879. Doi: 10.1590/01000683rbcs20140388 | spa |
dcterms.references | Oades, J. 1984. Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76, 319-337. Doi: 10.1007/BF02205590 | spa |
dcterms.references | Oliveira-Marques, J., F. Luizão, W. Teixeira, M. Sarrazin, S. Filgueira-Ferreira, T. Beldini, and E. Araújo-Marques. 2015 Distribution of organic carbon in different soil fractions in ecosystems of central Amazonia. Rev. Bras. Cienc. Solo 39, 232-242. Doi: 10.1590/01000683rbcs20150142 | spa |
dcterms.references | Pinto, Y., J. Álvarez, and F. Forero. 2016. Efecto de la labranza en la estabilidad estructural y resistencia a la penetración en un inceptisol sembrado con arracacha (Arracacia xanthorrhiza Bancroft) en Boyacá. Rev. Col. Cienc. Hort. 10(1), 99-112. Doi: 10.17584/rcch.2016v10i1.5049 | spa |
dcterms.references | Pla, I. 1983. Metodología para la caracterización física con fines de diagnóstico de problemas de manejo y conservación de suelos en condiciones tropicales. Rev. Fac. Agron. Alcance 32, 5-91. | spa |
dcterms.references | Pla, I. 2010. Medición y evaluación de propiedades físicas de los suelos: dificultades y errores más frecuentes. I - Propiedades mecánicas. Suelos Ecuatoriales 40(2), 75-93. | spa |
dcterms.references | Pulido, M., D. Lobo, and Z. Lozano. 2009. Asociación entre indicadores de estabilidad estructural y la materia orgánica en suelos agrícolas de Venezuela. Agrociencia 43, 221-230. | spa |
dcterms.references | Sena, K., K. Maltoni, G. Amorim-Faria, and A. Rodrigues-Cassiolato. 2017. Organic carbon and physical properties in sandy soil after conversion from degraded pasture to Eucalyptus in the Brazilian Cerrado. Rev. Bras. Cienc. Solo 41, e0150505. Doi: 10.1590/18069657rbcs20150505 | spa |
dcterms.references | Six, J., H. Bossuyt, S. Degryze, and K. Denef. 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 79, 7-31 Doi: 10.1016/j.still.2004.03.008 | spa |
dcterms.references | Tivet, F., J. Moraes-Sa, R. Lal, C. Briedis, P. Borszowskei, J. BurknerDos Santos, A. Farias, G. Eurich, D. Hartman, M. Nadolny, S. Bouzinac, and L. Seguy. 2013. Aggregate C depletion by plowing and its restoration by diverse biomass-C inputs under no-till in sub-tropical and tropical regions of Brazil. Soil Till. Res. 126, 203-218 Doi: 10.1016/j.still.2012.09.004 | spa |
dc.identifier.doi | 10.15446/agron.colomb.v37n3.77601 | |
dc.publisher.place | Colombia | spa |
dc.relation.citationedition | Vol. 37 No. 3 (2019) | spa |
dc.relation.citationendpage | 273 | spa |
dc.relation.citationissue | 3 (2019) | spa |
dc.relation.citationstartpage | 263 | spa |
dc.relation.citationvolume | 37 | spa |
dc.relation.cites | E. F. Visconti-Moreno and I. G. Valenzuela-Balcázar, “Impact of soil use on aggregate stability and its relationship with soil organic carbon at two different altitudes in the Colombian Andes”, Agron. Colomb., vol. 37, no. 3, pp. 263-273, Sep. 2019. | |
dc.relation.ispartofjournal | Agronomía Colombiana | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.proposal | Soil degradation | eng |
dc.subject.proposal | Soil structure | eng |
dc.subject.proposal | Organic matter | eng |
dc.subject.proposal | Agriculture | eng |
dc.subject.proposal | Degradación del suelo | spa |
dc.subject.proposal | Estructura del suelo | spa |
dc.subject.proposal | Materia orgánica | spa |
dc.subject.proposal | Agricultura | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Files in this item
This item appears in the following Collection(s)
-
Ambiente y Vida - GIAV [124]