Mostrar el registro sencillo del ítem

dc.contributor.authorValencia, Guillermo
dc.contributor.authorDuarte Forero, Jorge
dc.contributor.authorRojas Suárez, Jhan Piero
dc.date.accessioned2021-12-10T19:14:59Z
dc.date.available2021-12-10T19:14:59Z
dc.date.issued2020-06
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/4883
dc.description.abstract) using the PSO algorithm. A thermodynamic model of the integrated system was developed from the application of mass, energy and exergy balances to each component, which allowed the calculation of the exergy destroyed a fraction of each equipment, the power generated, the thermal and exergetic efficiency of the system. In addition, through a sensitivity analysis, the effect of the main operational and design variables on thermal efficiency and total exergy destroyed was studied, which were the objective functions selected in the proposed optimization. The results show that the greatest exergy destruction occurs at the thermal source, with a value of 97 kW for the system without Reheater (NRH), but this is reduced by 92.28% for the system with Reheater (RH). In addition, by optimizing the integrated cycle for a particle number of 25, the maximum thermal efficiency of 55.53% (NRH) was achieved, and 56.95% in the RH system. Likewise, for a particle number of 15 and 20 in the PSO algorithm, exergy destruction was minimized to 60.72 kW (NRH) and 112.06 kW (RH), respectively. Comparative analyses of some swarm intelligence optimization algorithms were conducted for the integrated S-CO2-SORC system, evaluating performance indicators, where the PSO optimization algorithm was favorable in the analyses, guaranteeing that it is the ideal algorithm to solve this case study.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherHeliyonspa
dc.relation.ispartofHeliyon
dc.rightsUnder a Creative Commons licenseeng
dc.sourcehttps://www.cell.com/heliyon/fulltext/S2405-8440(20)30980-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2405844020309804%3Fshowall%3Dtrue#relatedArticlesspa
dc.titleA comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithmseng
dc.typeArtículo de revistaspa
dcterms.referencesG. Valencia Ochoa, J. Nunez Alvarez, C. Acevedo Research Evolution on Renewable Energies Resources from 2007 to 2017: a Comparative Study on Solar, Geothermal, Wind and Biomass Energy (2019)spa
dcterms.referencesG.V. Ochoa, J.N. Alvarez, M.V. Chamorro Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar-Colombia Data Br., 27 (2019), p. 104753spa
dcterms.referencesF.B. Budes, G.V. Ochoa, Y.C. Escorcia An Economic Evaluation of Renewable and Conventional Electricity Generation Systems in a Shopping Center Using HOMER Pro® (2017)spa
dcterms.referencesD. Milani, M.T. Luu, R. McNaughton, A. Abbas A comparative study of solar heliostat assisted supercritical CO2 recompression Brayton cycles: dynamic modelling and control strategies J. Supercrit. Fluids, 120 (2017), pp. 113-124spa
dcterms.referencesG. Valencia, A. Fontalvo, Y. Cardenas Escorcia, J. Duarte, C. Isaza-Roldan Energy and exergy analysis of different exhaust waste heat recovery systems for natural gas engine based on ORC Energies, 12 (2019), p. 2378spa
dcterms.referencesG. Valencia Ochoa, C. Acevedo Peñaloza, J. Duarte Forero Thermoeconomic optimization with PSO algorithm of waste heat recovery systems based on organic rankine cycle system for a natural gas engine Energies, 12 (21) (2019)spa
dcterms.referencesG. Valencia, C. Peñaloza, J. Rojas Thermoeconomic modelling and parametric study of a Simple ORC for the recovery of waste heat in a 2 MW gas engine under different working fluids Appl. Sci., 9 (Oct. 2019), p. 4526spa
dcterms.referencesS. Quoilin, M. Van Den Broek, S. Declaye, P. Dewallef, V. Lemort Techno-economic survey of organic rankine cycle (ORC) systems Renew. Sustain. Energy Rev., 22 (2013), pp. 168-186spa
dcterms.referencesJ. Dyreby, S. Klein, G. Nellis, D. Reindl Design considerations for supercritical carbon dioxide Brayton cycles with recompression J. Eng. Gas Turbines Power, 136 (10) (2014)spa
dcterms.referencesP. Garg, P. Kumar, K. Srinivasan Supercritical carbon dioxide Brayton cycle for concentrated solar power J. Supercrit. Fluids, 76 (2013), pp. 54-60spa
dcterms.referencesJ. Sarkar Second law analysis of supercritical CO2 recompression Brayton cycle Energy, 34 (9) (2009), pp. 1172-1178spa
dcterms.referencesM.S. Khan, M. Abid, H.M. Ali, K.P. Amber, M.A. Bashir, S. Javed Comparative performance assessment of solar dish assisted s-CO2 Brayton cycle using nanofluids Appl. Therm. Eng., 148 (2019), pp. 295-306spa
dcterms.referencesL. Coco-Enríquez, J. Muñoz-Antón, J.M. Martínez-Val Integration between direct steam generation in linear solar collectors and supercritical carbon dioxide Brayton power cycles Int. J. Hydrogen Energy, 40 (44) (2015), pp. 15284-15300spa
dcterms.referencesJ. Wang, Z. Sun, Y. Dai, S. Ma Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network Appl. Energy, 87 (4) (2010), pp. 1317-1324spa
dcterms.referencesR. Chacartegui, J.M.M. De Escalona, D. Sánchez, B. Monje, T. Sánchez Alternative cycles based on carbon dioxide for central receiver solar power plants Appl. Therm. Eng., 31 (5) (2011), pp. 872-879spa
dcterms.referencesS.J. Bae, Y. Ahn, J. Lee, J.I. Lee Hybrid system of Supercritical Carbon Dioxide Brayton cycle and carbon dioxide rankine cycle combined fuel cell In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition (2014)spa
dcterms.referencesF. Alshammari, A. Pesyridis, A. Karvountzis-Kontakiotis, B. Franchetti, Y. Pesmazoglou Experimental study of a small scale organic Rankine cycle waste heat recovery system for a heavy duty diesel engine with focus on the radial inflow turbine expander performance Appl. Energy, 215 (2018), pp. 543-555spa
dcterms.referencesG. Valencia, J. Núñez, J. Duarte Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines Entropy, 21 (7) (2019)spa
dcterms.referencesP. Song, M. Wei, L. Shi, S.N. Danish, C. Ma A review of scroll expanders for organic rankine cycle systems Appl. Therm. Eng., 75 (2015), pp. 54-64spa
dcterms.referencesS. Quoilin, S. Declaye, B.F. Tchanche, V. Lemort Thermo-economic optimization of waste heat recovery Organic Rankine Cycles Appl. Therm. Eng., 31 (14–15) (2011), pp. 2885-2893spa
dcterms.referencesG. Valencia, J. Duarte, C. Isaza-Roldan Thermoeconomic analysis of different exhaust waste-heat recovery systems for natural gas engine based on ORC Appl. Sci., 9 (19) (2019)spa
dcterms.referencesO. Badr, P.W. O’Callaghan, S.D. Probert Rankine-cycle systems for harnessing power from low-grade energy sources Appl. Energy, 36 (4) (1990), pp. 263-292spa
dcterms.referencesA. Toffolo, A. Lazzaretto, G. Manente, M. Paci A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems Appl. Energy, 121 (2014), pp. 219-232spa
dcterms.referencesV. Zare A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants Energy Convers. Manag., 105 (2015), pp. 127-138spa
dcterms.referencesK. Seshadri Thermal design and optimization 21 (5) (1996)spa
dcterms.referencesR. Smith Chemical Process: Design and Integration John Wiley & Sons (2005)spa
dcterms.referencesG. Towler, R. Sinnott Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design Elsevier (2012)spa
dcterms.referencesB. Franchetti, A. Pesiridis, I. Pesmazoglou, E. Sciubba, L. Tocci Thermodynamic and Technical Criteria for the Optimal Selection of the Working Fluid in a Mini-ORC (2016)spa
dcterms.referencesS. Kelly, G. Tsatsaronis, T. Morosuk Advanced exergetic analysis: approaches for splitting the exergy destruction into endogenous and exogenous parts Energy, 34 (3) (2009), pp. 384-391spa
dcterms.referencesM. Yürüsoy, A. Keçebaş Advanced exergo-environmental analyses and assessments of a real district heating system with geothermal energy Appl. Therm. Eng., 113 (2017), pp. 449-459spa
dcterms.referencesL. Barrios Guzman, Y. Cárdenas Escorcia, G. Valencia Ochoa Análisis tendencial de las investigaciones de eficiencia energética en sistemas de refrigeración durante los años 2013 a 2017 Espacios, 38 (54) (2017)spa
dcterms.referencesH. Jouhara, M.A. Sayegh Energy efficient thermal systems and processes Therm. Sci. Eng. Prog., 7 (125–130) (2018), pp. 1-5spa
dcterms.referencesR.V. Padilla, Y.C. Soo Too, R. Benito, W. Stein Exergetic analysis of supercritical CO 2 Brayton cycles integrated with solar central receivers Appl. Energy, 148 (2015), pp. 348-365spa
dcterms.referencesM. Aslam Siddiqi, B. Atakan Alkanes as fluids in Rankine cycles in comparison to water and benzene Proc. 24th Int. Conf. Effic. Cost Optim. Simul. Environ. Impact Energy Syst. ECOS, 45 (1) (2011), pp. 1544-1558spa
dcterms.referencesB.F. Tchanche, G. Lambrinos, A. Frangoudakis, G. Papadakis Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system Appl. Energy, 87 (4) (2010), pp. 1295-1306spa
dcterms.referencesS. Kiranyaz Particle swarm optimization Adapt. Learn. Optim., 15 (2014), pp. 45-82spa
dcterms.referencesM. Lovay, G. Peretti, E. Romero Aplicación del algoritmo Evolución Diferencial en un método de dimensionamiento para filtros bicuadráticos 6th Argentine Symposium on Industrial Informatics, 46th Argentine Conference on Informatics (2017), pp. 222-233spa
dcterms.referencesX.-S. Yang 1 - optimization and metaheuristic algorithms in engineering X.-S. Yang, A.H. Gandomi, S. Talatahari, A.H. Alavi (Eds.), Metaheuristics in Water, Geotechnical and Transport Engineering, Elsevier, Oxford (2013), pp. 1-23spa
dcterms.referencesJ. Kennedy, R. Eberhart Particle swarm optimization Int. Conf. Neural Networks, 4 (1995), pp. 1942-1948spa
dcterms.referencesY. Feng, Y. Zhang, B. Li, J. Yang, Y. Shi Comparison between regenerative organic Rankine cycle (RORC) and basic organic Rankine cycle (BORC) based on thermoeconomic multi-objective optimization considering exergy efficiency and levelized energy cost (LEC) Energy Convers. Manag., 96 (2015), pp. 58-71spa
dcterms.referencesG. Valencia Ochoa, J. Cárdenas Gutierrez, J. Duarte Forero Exergy, economic, and life-cycle assessment of ORC system for waste heat recovery in a natural gas internal combustion engine Resources, 9 (2020)spa
dcterms.referencesH. Qi, et al. Application of multi-phase particle swarm optimization technique to inverse radiation problem J. Quant. Spectrosc. Radiat. Transf., 109 (3) (2008), pp. 476-493spa
dcterms.referencesG. Niu, B. Chen, J. Zeng Repulsive particle swarm optimization based on new diversity Chinese Contr. Decis. Conf. (2010), pp. 815-819spa
dc.identifier.doihttps://doi.org/10.1016/j.heliyon.2020.e04136
dc.publisher.placeAmsterdam , Paises Bajosspa
dc.relation.citationeditionVol.6 No.6.(2020)spa
dc.relation.citationendpage39spa
dc.relation.citationissue6 (2020)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume6spa
dc.relation.citesOchoa, G. V., Forero, J. D., & Rojas, J. P. (2020). A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms. Heliyon, 6(6), e04136.
dc.relation.ispartofjournalHeliyonspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalEnergyeng
dc.subject.proposalMechanical engineeringeng
dc.subject.proposalThermodynamicseng
dc.subject.proposalMathematical optimizationeng
dc.subject.proposalEnergy conservationeng
dc.subject.proposalSwarm intelligence algorithmseng
dc.subject.proposalBrayton supercritical CO2 cycleeng
dc.subject.proposalOrganic Rankine cycleeng
dc.subject.proposalExergetic analysiseng
dc.subject.proposalEnergy analysiseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem