Mostrar el registro sencillo del ítem

dc.contributor.authorSarabia Guarin, Alejandra
dc.contributor.authorSanchez Molina, Jorge
dc.contributor.authorBermúdez Carrillo , Juan Carlos
dc.date.accessioned2021-10-28T17:30:13Z
dc.date.available2021-10-28T17:30:13Z
dc.date.issued2020-10-21
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/454
dc.description.abstractThe sludge generated from water treatment has been classified as a potential environmental pollutant. Because of its chemical composition similar to clay, was proposed to evaluate the effect of its incorporation as a partial substitute for traditional clay materials in the manufacture of aluminosilicate refractory bricks. The raw materials used were characterized by XRD and XRF; the prototypes designed were mixed, extruded, dried and firing at 1200 °C, evaluating their linear shrinkage, apparent density, porosity, water absorption and mechanical and pyroscopic resistance (melting cone softening point). The results show the addition of 10% of sludges from industrial water treatment plant, contributed to elevate the softening point the clay that obtaining a refractory brick capable to supporting a temperature up to 1430 °C.eng
dc.description.abstractEl lodo generado por el tratamiento de agua ha sido clasificado como un contaminante ambiental potencial. Debido a que su composición química es similar a la arcilla, se propuso evaluar el efecto de su incorporación como un sustituto parcial de los materiales arcillosos tradicionales en la elaboración de ladrillos refractarios de aluminosilicatos. Las materias primas utilizadas se caracterizaron por DRX y FRX; los prototipos diseñados se mezclaron, extruyeron, secaron y dispararon a 1200 ° C, evaluando su contracción lineal, densidad aparente, porosidad, absorción de agua y resistencia mecánica y piroscópica (punto de reblandecimiento por conos de fusión). Los resultados muestran que la adición de un 10% de lodos residuales del tratamiento de agua industrial contribuyó a elevar el punto de reblandecimiento de la arcilla obteniendo un ladrillo refractario capaz de soportar temperaturas de hasta 1430 °C.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherRevista UIS Ingenieríasspa
dc.relation.ispartofRevista UIS Ingenierías
dc.rightsEsta obra está bajo licencia internacional Creative Commons Reconocimiento-SinObrasDerivadas 4.0.spa
dc.sourcehttps://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/10914spa
dc.titleEffect of use residual sludge from watertreatment plants as a partial substitute forclay for refractory bricks productioneng
dc.typeArtículo de revistaspa
dcterms.referencesIDEAM, “Solidos Suspendidos Totales en agua secados a 103-105°C,” IDEAM, Bogotá D.C., 2007. [Online]. Available: http://www.ideam.gov.co/documents/14691/38155/S%C3%B3lidos+Suspendidos+Totales+en+aguas.pdf/f02b4c7f-5b8b-4b0a-803a-1958aac1179cspa
dcterms.referencesL. Acosta, “Estado del arte del tratamiento de aguas por coagulación-floculación,” ICIDCA. Sobre los Derivados de la Caña de Azucar, vol. XL, no. 2, pp. 10-17, 2006.spa
dcterms.referencesG. Roldán, J. Ramírez, Fundamentos de limnología neotropical, Segunda ed. Medellín, Colombia: Universidad de Antioquía, 2008.spa
dcterms.referencesN. D. Tzoupanos, A. I. Zouboulis, “Coagulation-flocculation processes in water/wastewater treatment: the application of new generation of chemical reagents,” in 6th IASME/WSEAS International Conference on Heat Transfer, Thermal Engieering and Environment, Rhodes, Grecia, 2008, pp. 309-317.spa
dcterms.referencesA. Matilainen, M. Vepsäläinen, M. Sillanpää, “Natural organic matter removal by coagulation during drinking water treatment: A review,” Advances in Colloid and Interface Science, vol. 159, pp. 189-197, 2010, doi: 10.1016/j.cis.2010.06.007spa
dcterms.referencesO. Gibert, B. Lefèvre, A. Teuler, X. Bernat, J. Tobella, “Distribution of dissolved organic matter fractions along several stages of a drinking water treatment plant,” Journal of Water Process Engineering, vol. 6, pp. 64-71, 2015, doi: 10.1016/j.jwpe.2015.03.006spa
dcterms.referencesY. T. Chee, M. B. Pretty, P. Y. Katrina, Y. W. Ta, “Recent Advancement of Coagulation–Flocculation and Its Application in Wastewater Treatment,” Industrial & Engineering Chemistry Research, vol. 55, no. 16, pp. 4363-4389, 2016, doi: 10.1021/acs.iecr.5b04703spa
dcterms.referencesL. Semerjian, G. Ayoub, “High-pH–magnesium coagulation–flocculation in wastewater treatment,” Advances in Environmental Research, vol. 7, pp. 389-403, 2003, doi: 10.1016/S1093-0191(02)00009-6spa
dcterms.referencesM. Tantawy, “Characterization and pozzolanic properties of calcined alum sludge,” Materials Research Bulletin, vol. 61, pp. 415-421, 2015, doi: 10.1016/j.materresbull.2014.10.042spa
dcterms.referencesT. Ahmad, K. Ahmad, M. Alam, “Characterization of Water Treatment Plant’s Sludge and its Safe Disposal Options,” Procedia Environmental Sciences, vol. 35, pp. 950-955, 2016, doi: 10.1016/j.proenv.2016.07.088spa
dcterms.referencesS. Jiménez, M. M. Micó, M. Arnaldos, F. Medina, S. Contreras, “State of the art of produced water treatment,” Chemosphere, vol. 192, pp. 186-208, 2018, doi: 10.1016/j.chemosphere.2017.10.139spa
dcterms.referencesS. C. Bondy, “Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer's disease and age-related neurodegeneration,” NeuroToxicology, vol. 52, pp. 222- 229, 2016. doi: 10.1016/j.neuro.2015.12.002spa
dcterms.referencesZ. Wang, X. Wei, J. Yang, J. Suo, J. Chen, X. Liu, X. Zhao, “Chronic exposure to aluminum and risk of Alzheimer’s disease: A meta-analysis,” Neuroscience Letters, vol. 610, pp. 200-206, 2016, doi: 10.1016/j.neulet.2015.11.014spa
dcterms.referencesG. Chobanoglous, Wastewater engineering, treatment, disposal and reuse. New Delh, USA: McGraw-Hill, 1987.spa
dcterms.referencesL. Jin, G. Zhang, “Current state of sewage treatment in China,” Water Research, vol. 66, pp. 85-98, 2014, doi: 10.1016/j.watres.2014.08.014spa
dcterms.referencesE. Metcalf, Wastewater Engineering: Treatment and Resource Recovery. Nueva York, USA: McGraw Hill Education, 2013.spa
dcterms.referencesB. M. Cieslik, J. Namiesnik, P. Konieczka, “Review of sewage sludge management: standards, regulations and analytical methods,” Journal of Cleaner Production, vol. 90, pp. 1-15, 2015, doi: 10.1016/j.jclepro.2014.11.031spa
dcterms.referencesA. Kelessidis, A. Stasinakis, “Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries,” Waste Management, vol. 32, pp. 1186-1195, 2012, doi: 10.1016/j.wasman.2012.01.012spa
dcterms.referencesG. Yang, G. Zhang, H. Wang, “Current state of sludge production, management, treatment and disposal in China,” Water Research, vol. 78, pp. 60-73, 2015, doi: 10.1016/j.watres.2015.04.002spa
dcterms.referencesM. Kacprzaka, E. Neczaj, A. Fijalkowski, A. Grobelak, A. Grosser, M. Worwag, A. Rorat, H. Brattebo, A. Almas, B. Ram, “Sewage sludge disposal strategies for sustainable development,” Environmental Research, vol. 156, pp. 39-46, 2017, doi: 10.1016/j.envres.2017.03.010spa
dcterms.referencesF. Agmar, K. Fagnani, H. Alves, L. Colpini, S. Kunh, S. Nastri, L. Conserva, F. Melchiades, “Effect of incorporating sludge from poultry slaughterhouse wastewater treatment system in ceramic mass for tile production,” Environmental Technology & Innovation, vol. 9, pp. 294-302, 2018, doi: 10.1016/j.eti.2017.11.010spa
dcterms.referencesM. Juel, A. Mizan, T. Ahmed, “Sustainable use of tannery sludge in brick manufacturing in Bangladesh,” Waste Management, vol. 60, pp. 259-269, 2017, doi: 10.1016/j.wasman.2016.12.041spa
dcterms.referencesJ. Cusidó, L. Cremades, C. Soriano, M. Devant, “Incorporation of paper sludge in clay brick formulation: Ten years of industrial experience,” Applied Clay Science, vol. 108, pp. 191-198, 2015, doi: 10.1016/j.clay.2015.02.027spa
dcterms.referencesD. Eliche, R. Azevedo, F. Corpas, “Effect of sludge from oil refining industry or sludge from pomace oil extraction industry addition to clay ceramics,” Applied Clay Science, vol. 114, pp. 202-211, 2015, doi: 10.1016/j.clay.2015.06.009spa
dcterms.referencesS. Amin, E. Abdel, Hamid, S. El-Sherbiny, H. Sibak, M. Abadir, “The use of sewage sludge in the production of ceramic floor tiles,” HBRC Journal, pp. 1-7, 2017, doi: 10.1016/j.hbrcj.2017.02.002spa
dcterms.referencesL. Araujo, S. Molina, L. Noguera, “Aprovechamiento de los lodos provenientes de plantas de tratamiento de aguas residuales como materia prima en la industria de la construcción: revisión bibliográfica,” Revista Agunkuyâa, vol. 8, no. 1, pp. 1-11, 2018.spa
dcterms.referencesM. Ramírez, A. Vásquez, J. Gómez, F. Cabrera, “Total replacement of recycled aggregate and treated wastewater: concrete recycling in extremis,” Journal of Sustainable Architecture and Civil Engineering , vol. 15, no. 2, pp. 66-75, 2016, doi: 10.5755/j01.sace.15.2.15464spa
dcterms.referencesS. Abo-El-Enein, A. Shebl, S. Abo-El-Dahab, “Drinking water treatment sludge as an efficient adsorbent for heavy metals removal,” Applied Clay Science, vol. 146, pp. 343-349, 2017, doi: 10.1016/j.clay.2017.06.027spa
dcterms.referencesM. Tantawy, S. Ramadan, “Middle Eocene clay from Goset Abu Khashier: Geological assessment and utilization with drinking water treatment sludge in brick manufacture,” Applied Clay Science, vol. 138, pp. 114-124, 2017, doi: 10.1016/j.clay.2017.01.005spa
dcterms.referencesO. Kizinievič, V. Kizinievič, R. Boris, G. Girskas, J. Malaiškienė, “Eco-efficient recycling of drinking water treatment sludge and glass waste: development of ceramic bricks,” Journal of Material Cycles and Waste Management, pp. 1-11, 2017 , doi: 10.1007/s10163-017-0688-zspa
dcterms.referencesP. Torres, D. Hernández, D. Paredes, “Uso productivo de lodos de plantas de tratamiento de agua potable en la fabricación de ladrillos cerámicos,” Revista ingeniería de construcción, vol. 12, no. 3, pp. 145-154, 2012, doi: 10.4067/S0718-50732012000300003spa
dcterms.referencesS. Pracidelli, F. Melchiades, “Importância da composição granulométrica de massas para a cerâmica vermelha,” Cerâmica Industrial, vol. 2, no. 1, pp. 31-35, 1997.spa
dcterms.referencesA. Sarabia, J. Sánchez, J. Leyva, “Uso de nutrientes tecnológicos como materia prima en la fabricación de materiales de construcción en el paradigma de la economía circular,” Respuestas, vol. 22, no. 1, pp. 6-16, 2017, doi: 10.22463/0122820X.815spa
dcterms.referencesMétodo de ensayo para determinar el cono pirométrico equivalente -CPE- de materiales refractarios silicoaluminosos y de alta alúmina. ICONTEC NTC 706, 2018.spa
dcterms.referencesMateriales Refractarios. Clasificación General. ICONTEC NTC 623, 1972.spa
dcterms.referencesMetodos de enzayo para determinar posoridad aparente, absorción de agua, gravedad específica aparente y densidad aparente por agua en ebullición de ladrillos refractarios y piezas refractarias quemadas, ICONTEC NTC 674, 2002.spa
dcterms.referencesM. Lassinantti, A. Gualtieri, S. Gagliardi, P. Ruffini, R. Ferrari, M. Hanuskova, “Thermal conductivity of fired clays: Effects of mineralogical and physical properties of the raw materials,” Applied Clay Science, vol. 49, no. 3, pp. 269-275, 2010.spa
dcterms.referencesJ. Linares, F. Huertas, J. Capel, “La arcilla como material cerámico. Características y comportamiento,” Cuadernos de prehistoria y arqueología de la Universidad de Granada, vol. 8, pp. 479-490, 1983.spa
dcterms.referencesJ. García, M. J. Ortz, A. Saburit, G. Silva, “Thermal conductivity of traditional ceramics: Part II: Influence of mineralogical composition,” Ceramics International, vol. 36, no. 7, pp. 2017-2024, 2010, doi: 10.1016/j.ceramint.2010.05.013spa
dcterms.referencesA. García, “Origen y composición de las arcillas cerámicas,” Boletin de la Sociedad Española de Cerámica y Vidrio, vol. 24, no. 6, pp. 395-404, 1985.spa
dcterms.referencesM. Fernandez, Manual sobre fabricación de baldosas, tejas y ladrillos. Terrassa, España: Beralmar, 2000.spa
dcterms.referencesE. Galán, P. Aparicio, “Materias primas para la industria cerámica,” Seminarios de la Sociedad Española de Mineralogía, vol. 2, pp. 31-49, 2006.spa
dcterms.referencesD. C. Alvarez, J. Sánchez, F. A. Corpas, J. F. Gelves, “Características de las materias primas usadas por las empresas del sector cerámico del área metropolitana de Cúcuta (Colombia),” Boletín de la Sociedad Española de Cerámica y Vidrio, vol. 5, no. 6, pp. 247-256, 2018, doi: 10.1016/j.bsecv.2018.04.002spa
dcterms.referencesI. Bernal, H. Cabezas, C. Espitia, J. Mojica, J. Quintero, “Análisis próximo de arcillas para cerámica,” Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol. 27, no. 105, pp. 569-578, 2003.spa
dcterms.referencesK. Swapan, D. Kausik, S. Nar, S. Ritwik, “Shrinkage and strength behaviour of quartzitic and kaolinitic clays in wall tile compositions,” Applied Clay Science, vol. 29, no. 2, pp. 137-143, 2005, doi: 10.1016/j.clay.2004.10.002spa
dcterms.referencesÁ. X. Moreno, “Obtención tecnológica de mullita a parir de arcillas y caolines refractarios argentinos, y alúmina calcinada o alúminas hidratadas,” doctoral thesis, Universidad Nacional de La Plata, Buenos Aires, 2014.spa
dcterms.referencesR. L. Coble, W. D. Kingery, “Effect of Porosity on Physical Properties of Sintered Alumina,” Journal of the American Ceramic Society, vol. 39, no. 11, pp. 377-385, 1956, doi: 10.1111/j.1151-2916.1956.tb15608.xspa
dcterms.referencesE. Ertugrul, A. Mustafa, “Utilization of sewage sludge, oven slag and fly ash in clay brick production,” Construction and Building Materials, vol. 194, pp. 110-121, 2019, doi: 10.1016/j.conbuildmat.2018.10.231spa
dcterms.referencesW. Callister, Introducción a la ciencia e ingeniería de los materiales. Barcelona, España: Reverté, 2007.spa
dcterms.referencesP. A. Ospina, “Influencia de la Adición o Aumento en la Cantidad de Mullita en la Resistencia a la Flexión de una Pasta de Porcelana Eléctrica Comercial,” doctoral thesis, Universidad Nacional de Colombia, Medellín, 2015.spa
dcterms.referencesC. Rodríguez, G. Cultrone, A. Sánchez, A. Sebastian, “EM study of mullite growth after muscovite breakdown,” American Mineralogist, vol. 88, no. 5-6, pp. 713-724, 2003.spa
dcterms.referencesW. E. Lee, G. P. Souza, C. J. McConville, T. Tarvornpanich, Y. Iqbal, “Mullite formation in clays and clay-derived vitreous ceramics,” Journal of the European Ceramic Society, vol. 28, no. 2, pp. 465-471, 2008, doi: 10.1016/j.jeurceramsoc.2007.03.009spa
dcterms.referencesOxford University, Diccionario de Ciencias. Madrid, España: Editorial Computlense S.A., 2000.spa
dc.identifier.doi10.18273/revuin.v20n1-2021002
dc.publisher.placeColombiaspa
dc.relation.citationeditionVol.20 No.1.(2021)spa
dc.relation.citationendpage22spa
dc.relation.citationissue1 (2021)spa
dc.relation.citationstartpage11spa
dc.relation.citationvolume20spa
dc.relation.citesSarabia-Guarín, A., Sánchez-Molina, J., & Bermúdez-Carrillo, J. C. (2021). Effect of use residual sludge from water treatment plants as a partial substitute for clay for refractory bricks production. Revista UIS Ingenierías, 20(1), 11-22.
dc.relation.ispartofjournalRevista UIS Ingenieríasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-SinDerivadas 4.0 Internacional (CC BY-ND 4.0)spa
dc.subject.proposalpyroscopic resistanceeng
dc.subject.proposalladrillos refractariosspa
dc.subject.proposallodos residualesspa
dc.subject.proposalplanta de tratamiento de aguaspa
dc.title.translatedEfecto del uso de lodo residual de las plantas de tratamiento de agua como un sustituto parcial de arcilla en la producción de ladrillos refractarios
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem