Mostrar el registro sencillo del ítem

dc.contributor.authorLeyva Díaz, Juan Carlos
dc.contributor.authorSanchez Molina, Jorge
dc.contributor.authorBelmonte-Ureña, Luis Jesús
dc.contributor.authormolina, valentin
dc.contributor.authorBatlles de la Fuente, Ana
dc.date.accessioned2021-10-27T23:03:30Z
dc.date.available2021-10-27T23:03:30Z
dc.date.issued2021-08-27
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/442
dc.description.abstractWater pollution is a worldwide problem. Water consumption increases at a faster rate than population and this leads to a higher pollution rate. Sustainable Development Goals (SDG) include proposals aimed at ensuring the availability of clean water and its sustainable management (Goal 6), as well as the conservation and sustainable use of oceans and seas. The current trend consists in trying to reconcile economic growth with sustainability, avoiding the negative externalities for the environment generated by human activity. More specifically, the objective of this article is to present the evolution of the research regarding the removal of polluting pharmaceuticals that are discharged into wastewater. To do that, a bibliometric analysis of 2938 articles comprising the period 1979–2020 has been carried out. This analysis includes productivity indicators in the scientific field: journals, authors, research institutions and countries. In addition, keyword analysis allows the identification of four main axes of the research regarding the removal of pharmaceutical residues found in wastewater. The first group of articles is aimed at identifying the pharmaceuticals present in polluting effluents. The second and third groups of articles focus on presenting the procedures that enable the treatment of emerging contaminants, either from a biological point of view (second group) or a physicochemical point of view (third group). The fourth group refers to water quality and its possibilities to be reused. Finally, there is a growing trend of worldwide scientific publications, which justifies the importance of polluting residues management, especially those of pharmaceutical origin, in order to achieve a more sustainable societyeng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherWaterspa
dc.relation.ispartofWater
dc.rightsCopyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).eng
dc.sourcehttps://www.mdpi.com/2073-4441/13/17/2353spa
dc.titleRemoval of pharmaceuticals from wastewater: Analysis of the past and present global research activitieseng
dc.typeArtículo de revistaspa
dcterms.referencesChen, K.; Zhou, J.L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China. Chemosphere 2014, 95, 604–612. [CrossRef]spa
dcterms.referencesAhmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Adsorptive removal of antibioticsfrom water and wastewater: Progress and challenges. Sci. Total Environ. 2015, 532, 112–126. [CrossRef] [PubMed]spa
dcterms.referencesBarroso, P.J.; Santos, J.L.; Martín, J.; Aparicio, I.; Alonso, E. Emerging contaminants in the atmosphere: Analysis, occurrence and future challenges. Crit. Rev. Environ. Sci. Technol. 2019, 49, 104–171. [CrossRef]spa
dcterms.referencesTaheran, M.; Naghdi, M.; Brar, S.K.; Verma, M.; Surampalli, R.Y. Emerging contaminants: Here today, there tomorrow! Environ. Nanotechnol. Monit. Manag. 2018, 10, 122–126. [CrossRef]spa
dcterms.referencesWilkinson, J.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environ. Pollut. 2017, 231, 954–970. [CrossRef] [PubMed]spa
dcterms.referencesLodeiro, C.; Capelo, J.L.; Oliveira, E.; Lodeiro, J.F. New toxic emerging contaminants: Beyond the toxicological effects. Environ. Sci. Pollut. Res. 2019, 26, 1–4. [CrossRef]spa
dcterms.referencesDeegan, A.; Shaik, B.; Nolan, K.; Urell, K.; Oelgemöller, M.; Tobin, J.; Morrissey, A. Treatment options for wastewater effluents from pharmaceutical companies. Int. J. Environ. Sci. Technol. 2011, 8, 649–666. [CrossRef]spa
dcterms.referencesAhmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Thomaidis, N.S.; Xu, J. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. J. Hazard. Mater. 2017, 323, 274–298. [CrossRef]spa
dcterms.referencesGarcía-Menéndez, L.; Leyva-Díaz, J.C.; Díaz, E.; Ordóñez, S. Biological absorption as main route for amoxicillin reduction and heterotrophic kinetic modeling in a “NIPHO” bioreactor. J. Environ. Chem. Eng. 2021, 9, 104775. [CrossRef]spa
dcterms.referencesPopulation Division of the Department of Economic and Social Affairs of the United Nations Secretariat. World Population Prospects 2019; Population Division: New York, NY, USA, 2019.spa
dcterms.referencesFelis, E.; Kalka, J.; Sochacki, A.; Kowalska, K.; Bajkacz, S.; Harnisz, M.; Korzeniewska, E. Antimicrobial pharmaceuticals in the aquatic environment-occurrence and environmental implications. Eur. J. Pharmacol. 2020, 866, 172813. [CrossRef]spa
dcterms.referencesLi, Y.; Zhang, L.; Ding, J.; Liu, X. Prioritization of pharmaceuticals in water environment in China based on environmental criteria and risk analysis of top-priority pharmaceuticals. J. Environ. Manag. 2020, 253, 109732. [CrossRef]spa
dcterms.referencesRivera-Utrilla, J.; Sánchez-Polo, M.; Ferro-García, M.Á.; Prados-Joya, G.; Ocampo-Pérez, R. Pharmaceuticals as emerging contaminants and their removal from water: A review. Chemosphere 2013, 93, 1268–1287. [CrossRef] [PubMed]spa
dcterms.referencesTijani, J.O.; Fatoba, O.O.; Petrik, L.F. A review of pharmaceuticals and endocrine-disrupting compounds: Sources, effects, removal, and detections. Water Air Soil Pollut. 2013, 224, 1–29. [CrossRef]spa
dcterms.referencesRodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J. 2017, 323, 361–380. [CrossRef]spa
dcterms.referencesRamírez-Malule, H.; Quiñones-Murillo, D.H.; Manotas-Duque, D. Emerging contaminants as global environmental hazards. A bibliometric analysis. Emerg. Contam. 2020, 6, 179–193. [CrossRef]spa
dcterms.referencesLeyva-Díaz, J.C.; Phonbun, R.A.; Taggart, J.; Díaz, E.; Ordóñez, S. Influence of nalidixic acid on tandem heterotrophic-autotrophic kinetics in a “NIPHO” activated sludge reactor. Chemosphere 2019, 218, 128–137. [CrossRef]spa
dcterms.referencesGarcía, L.; Leyva-Díaz, J.C.; Díaz, E.; Ordóñez, S. A review of the adsorption-biological hybrid processes for the abatement of emerging pollutants: Removal efficiencies, physicochemical analysis, and economic evaluation. Sci. Total Environ. 2021, 780, 146554. [CrossRef]spa
dcterms.referencesGrover, D.P.; Zhou, J.; Frickers, P.; Readman, J. Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: Impact on receiving river water. J. Hazard. Mater. 2011, 185, 1005–1011. [CrossRef]spa
dcterms.referencesHerrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Bravo-Montero, L. Worldwide Research on Socio-Hydrology: A Bibliometric Analysis. Water 2021, 13, 1283. [CrossRef]spa
dcterms.referencesAbad-Segura, E.; González-Zamar, M.D.; Belmonte-Ureña, L.J. Effects of circular economy policies on the environment and sustainable growth: Worldwide research. Sustainability 2020, 12, 5792. [CrossRef]spa
dcterms.referencesAbad-Segura, E.; Morales, M.E.; Cortés-García, F.J.; Belmonte-Ureña, L.J. Industrial Processes Management for a Sustainable Society: Global Research Analysis. Processes 2020, 8, 631. [CrossRef]spa
dcterms.referencesMeseguer-Sánchez, V.; Abad-Segura, E.; Belmonte-Ureña, L.J.; Molina-Moreno, V. Examining the research evolution on the socio-economic and environmental dimensions on university social responsibility. Int. J. Environ. Res. Public Health 2020, 17, 4729. [CrossRef] [PubMed]spa
dcterms.referencesBelmonte-Ureña, L.J.; Garrido-Cardenas, J.A.; Camacho-Ferre, F. Analysis of world research on grafting in horticultural plants. HortScience 2020, 55, 112–120. [CrossRef]spa
dcterms.referencesDuque-Acevedo, M.; Belmonte-Ureña, L.J.; Cortés-García, F.J.; Camacho-Ferre, F. Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Glob. Ecol. Conserv. 2020, 22, e00902. [CrossRef]spa
dcterms.referencesVan Eck, N.J.; Waltman, L. Bibliometric mapping of the computational intelligence field. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2007, 15, 625–645. [CrossRef]spa
dcterms.referencesVan Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [CrossRef]spa
dcterms.referencesBurnham, J.F. Scopus database: A review. Biomed. Digit. Libr. 2006, 3, 1–8. [CrossRef]spa
dcterms.referencesFundación Española para la Ciencia y la Tecnología. La Producción Científica Española en el Ámbito de la Bioeconomía 2005–2014; Fundación Española para la Ciencia y la Tecnología: Madrid, España, 2017.spa
dcterms.referencesMongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [CrossRef]spa
dcterms.referencesEysenbach, G. Citation advantage of open access articles. PLoS Biol. 2006, 4, e157. [CrossRef]spa
dcterms.referencesHodge, D.R.; Lacasse, J.R. Evaluating journal quality: Is the H-index a better measure than impact factors? Res. Soc. Work Pract. 2011, 21, 222–230. [CrossRef]spa
dcterms.referencesScimago Journal & Country Rank (SJR) Journal Rankings. Available online: https://www.scimagojr.com/journalrank.php (accessed on 17 February 2021).spa
dcterms.referencesCarballa, M.; Omil, F.; Lema, J.M.; Llompart, M.; García-Jares, C.; Rodríguez, I.; Gómez, M.; Ternes, T. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res. 2004, 38, 2918–2926. [CrossRef]spa
dcterms.referencesArgaman, Y. Single sludge nitrogen removal from industrial wastewater. Water Sci. Technol. 1982, 14, 7–20. [CrossRef]spa
dcterms.referencesNielsen, W.K.; Madsen, R.F.; Olsen, O.J. Experience with plate-and-frame ultrafiltration and hyperfiltration systems for desalination of water and purification of waste water. Desalination 1980, 32, 309–326. [CrossRef]spa
dcterms.referencesHirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [CrossRef]spa
dcterms.referencesPetrovi´c, M.; Gonzalez, S.; Barceló, D. Analysis and removal of emerging contaminants in wastewater and drinking water. TrAC Trends Anal. Chem. 2003, 22, 685–696. [CrossRef]spa
dcterms.referencesBenotti, M.J.; Trenholm, R.A.; Vanderford, B.J.; Holady, J.C.; Stanford, B.D.; Snyder, S.A. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ. Sci. Technol. 2009, 43, 597–603. [CrossRef] [PubMed]spa
dcterms.referencesLiang, C.; Zhang, L.; Nord, N.B.; Carvalho, P.N.; Bester, K. Dose-dependent effects of acetate on the biodegradation of pharmaceuticals in moving bed biofilm reactors. Water Res. 2019, 159, 302–312. [CrossRef] [PubMed]spa
dcterms.references. Tang, K.; Ooi, G.T.H.; Litty, K.; Sundmark, K.; Kaarsholm, K.M.S.; Sund, C.; Kragelund, C.; Christensson, M.; Bester, K.; Andersen, H.R. Removal of pharmaceuticals in conventionally treated wastewater by a polishing moving bed biofilm reactor (MBBR) with intermittent feeding. Bioresour. Technol. 2017, 236, 77–86. [CrossRef] [PubMed]spa
dcterms.referencesAntoniou, M.G.; Hey, G.; Vega, S.R.; Spiliotopoulou, A.; Fick, J.; Tysklind, M.; la Cour Jansen, J.; Andersen, H.R. Required ozone doses for removing pharmaceuticals from wastewater effluents. Sci. Total Environ. 2013, 456–457, 42–49. [CrossRef]spa
dcterms.referencesCastellet-Rovira, F.; Lucas, D.; Villagrasa, M.; Rodríguez-Mozaz, S.; Barceló, D.; Sarrà, M. Stropharia rugosoannulata and Gymnopilus luteofolius: Promising fungal species for pharmaceutical biodegradation in contaminated water. J. Environ. Manag. 2018, 207, 396–404. [CrossRef]spa
dcterms.referencesMir-Tutusaus, J.A.; Parladé, E.; Llorca, M.; Villagrasa, M.; Barceló, D.; Rodriguez-Mozaz, S.; Martinez-Alonso, M.; Gaju, N.; Caminal, G.; Sarrà, M. Pharmaceuticals removal and microbial community assessment in a continuous fungal treatment of non-sterile real hospital wastewater after a coagulation-flocculation pretreatment. Water Res. 2017, 116, 65–75. [CrossRef] [PubMed]spa
dcterms.references. Lucas, D.; Castellet-Rovira, F.; Villagrasa, M.; Badia-Fabregat, M.; Barceló, D.; Vicent, T.; Caminal, G.; Sarrà, M.; Rodríguez-Mozaz, S. The role of sorption processes in the removal of pharmaceuticals by fungal treatment of wastewater. Sci. Total Environ. 2018, 610–611, 1147–1153. [CrossRef] [PubMed]spa
dcterms.referencesHuber, M.M.; Göbel, A.; Joss, A.; Hermann, N.; Löffler, D.; McArdell, C.S.; Ried, A.; Siegrist, H.; Ternes, T.A.; Von Gunten, U. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: A pilot study. Environ. Sci. Technol. 2005, 39, 4290–4299. [CrossRef] [PubMed]spa
dcterms.referencesTernes, T.A.; Herrmann, N.; Bonerz, M.; Knacker, T.; Siegrist, H.; Joss, A. A rapid method to measure the solid-water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water Res. 2004, 38, 4075–4084. [CrossRef]spa
dcterms.referencesAbegglen, C.; Joss, A.; McArdell, C.S.; Fink, G.; Schlüsener, M.P.; Ternes, T.A.; Siegrist, H. The fate of selected micropollutants in a single-house MBR. Water Res. 2009, 43, 2036–2046. [CrossRef]spa
dcterms.referencesJoss, A.; Keller, E.; Alder, A.C.; Göbel, A.; McArdell, C.S.; Ternes, T.; Siegrist, H. Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res. 2005, 39, 3139–3152. [CrossRef]spa
dcterms.referencesYilmaz, G.; Kaya, Y.; Vergili, I.; Gönder, Z.B.; Özhan, G.; Celik, B.O.; Altinkum, S.M.; Bagdatli, Y.; Boergers, A.; Tuerk, J. Characterization and toxicity of hospital wastewaters in Turkey. Environ. Monit. Assess. 2017, 189, 55. [CrossRef]spa
dcterms.referencesVergili, I.; Kaya, Y.; Gönder, Z.B.; Boergers, A.; Tuerk, J. Occurence and Prioritization of Pharmaceutical Active Compounds in Domestic/Municipal Wastewater Treatment Plants. Bull. Environ. Contam. Toxicol. 2019, 102, 252–258. [CrossRef]spa
dcterms.referencesZupanc, M.; Kosjek, T.; Petkovšek, M.; Dular, M.; Kompare, B.; Širok, B.; Blažeka, Ž.; Heath, E. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment. Ultrason. Sonochem. 2013, 20, 1104–1112. [CrossRef]spa
dcterms.referencesZupanc, M.; Kosjek, T.; Petkovšek, M.; Dular, M.; Kompare, B.; Širok, B.; Stražar, M.; Heath, E. Shear-induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater. Ultrason. Sonochem. 2014, 21, 1213–1221. [CrossRef]spa
dcterms.referencesKraigher, B.; Kosjek, T.; Heath, E.; Kompare, B.; Mandic-Mulec, I. Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Res. 2008, 42, 4578–4588. [CrossRef]spa
dcterms.referencesHeath, E.; Kosjek, T.; Cuderman, P.; Kompare, B. Pharmaceuticals and personal care product residues in the environment: Identification and remediation. Environ. Toxicol. 2006, 10, 131–138. [CrossRef]spa
dcterms.referencesIDAEA–Institute of Environmental Assessment and Water Research. Available online: https://www.idaea.csic.es/ (accessed on 16 December 2020).spa
dcterms.references. Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res. 2009, 43, 363–380. [CrossRef] [PubMed]spa
dcterms.referencesSeif, H.A.A.; Joshi, S.G.; Gupta, S.K. Effect of organic load and reactor height on the performance of anaerobic mesophilic and thermophilic fixed film reactors in the treatment of pharmaceutical wastewater. Environ. Technol. 1992, 13, 1161–1168. [CrossRef]spa
dcterms.referencesJení´cek, P.; Zábranská, J.; Dohányos, M. The influence of anaerobic pretreatment on the nitrogen removal from biosynthetic pharmaceutical wastewaters. Antonie Leeuwenhoek 1996, 69, 41–46. [CrossRef] [PubMed]spa
dcterms.referencesChong, M.N.; Jin, B. Photocatalytic treatment of high concentration carbamazepine in synthetic hospital wastewater. J. Hazard. Mater. 2012, 199–200, 135–142. [CrossRef] [PubMed]spa
dcterms.referencesJallouli, N.; Pastrana-Martínez, L.M.; Ribeiro, A.R.; Moreira, N.F.; Faria, J.L.; Hentati, O.; Silva, A.M.; Ksibi, M. Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system. Chem. Eng. J. 2018, 334, 976–984. [CrossRef]spa
dcterms.referencesMoreira, N.F.F.; Orge, C.A.; Ribeiro, A.R.; Faria, J.L.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M.T. Fast mineralization and detoxification of amoxicillin and diclofenac by photocatalytic ozonation and application to an urban wastewater. Water Res. 2015, 87, 87–96. [CrossRef]spa
dcterms.referencesHapeshi, E.; Achilleos, A.; Vasquez, M.I.; Michael, C.; Xekoukoulotakis, N.P.; Mantzavinos, D.; Kassinos, D. Drugs degrading photocatalytically: Kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions. Water Res. 2010, 44, 1737–1746. [CrossRef]spa
dcterms.referencesRaj, D.S.S.; Anjaneyulu, Y. Evaluation of biokinetic parameters for pharmaceutical wastewaters using aerobic oxidation integrated with chemical treatment. Process. Biochem. 2005, 40, 165–175.spa
dcterms.referencesHena, S.; Gutierrez, L.; Croué, J.-P. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. J. Hazard. Mater. 2021, 403, 124041. [CrossRef]spa
dcterms.referencesGarcia-Rodríguez, A.; Matamoros, V.; Fontàs, C.; Salvadó, V. The ability of biologically based wastewater treatment systems to remove emerging organic contaminants—A review. Environ. Sci. Pollut. Res. 2014, 21, 11708–11728. [CrossRef]spa
dcterms.referencesPidlisnyuk, V.V.; Marutovsky, R.M.; Radeke, K.H.; Klimenko, N. Biosorption processes for natural and waste water treatment— Part II: Experimental studies and theoretical model of a biosorption fixed bed. Eng. Life Sci. 2003, 3, 439–445. [CrossRef]spa
dcterms.referencesIkehata, K.; Gamal El-Din, M.; Snyder, S.A. Ozonation and advanced oxidation treatment of emerging organic pollutants in water and wastewater. Ozone Sci. Eng. 2008, 30, 21–26. [CrossRef]spa
dcterms.references. Quiñones, D.H.; Álvarez, P.M.; Rey, A.; Beltrán, F.J. Removal of emerging contaminants from municipal WWTP secondary effluents by solar photocatalytic ozonation. A pilot-scale study. Separ. Purif. Technol. 2015, 149, 132–139. [CrossRef]spa
dcterms.referencesBabu, D.S.; Srivastava, V.; Nidheesh, P.V.; Kumar, M.S. Detoxification of water and wastewater by advanced oxidation processes. Sci. Total. Environ. 2019, 696, 133961. [CrossRef]spa
dcterms.references. Haag, W.R.; Yao, C.C.D. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol. 1992, 26, 1005–1013. [CrossRef]spa
dcterms.referencesKanakaraju, D.; Glass, B.D.; Oelgemöller, M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. J. Environ. Manag. 2018, 219, 189–207. [CrossRef] [PubMed]spa
dcterms.referencesBansal, P.; Verma, A.; Talwar, S. Detoxification of real pharmaceutical wastewater by integrating photocatalysis and photo-Fenton in fixed-mode. Chem. Eng. J. 2018, 349, 838–848. [CrossRef]spa
dcterms.referencesIkehata, K.; Jodeiri Naghashkar, N.; Gamal El-Din, M. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review. Ozone Sci. Eng. 2006, 28, 353–414. [CrossRef]spa
dcterms.referencesSamer, M. Biological and chemical wastewater treatment processes. Wastewater Treatment Engineering; InTech Europe: Rijeka, Croatia, 2015.spa
dcterms.referencesChiang, Y.-C.; Juang, R.-S. Surface modifications of carbonaceous materials for carbon dioxide adsorption: A review. J. Taiwan Inst. Chem. Eng. 2017, 71, 214–234. [CrossRef]spa
dcterms.referencesXiang, Y.; Xu, Z.; Wei, Y.; Zhou, Y.; Yang, X.; Yang, Y.; Yang, J.; Zhang, J.; Luo, L.; Zhou, Z. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors. J. Environ. Manag. 2019, 237, 128–138. [CrossRef]spa
dcterms.referencesMarques, S.C.R.; Marcuzzo, J.M.; Baldan, M.R.; Mestre, A.S.; Carvalho, A.P. Pharmaceuticals removal by activated carbons: Role of morphology on cyclic thermal regeneration. Chem. Eng. J. 2017, 321, 233–244. [CrossRef]spa
dcterms.references. Lima, E.C. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol. Environ. Saf. 2018, 150, 1–17.spa
dcterms.referencesKamali, M.; Suhas, D.P.; Costa, M.E.; Capela, I.; Aminabhavi, T.M. Sustainability considerations in membrane-based technologies for industrial effluents treatment. Chem. Eng. J. 2019, 368, 474–494. [CrossRef]spa
dcterms.referencesKim, S.; Chu, K.H.; Al-Hamadani, Y.A.J.; Park, C.M.; Jang, M.; Kim, D.-H.; Yu, M.; Heo, J.; Yoon, Y. Removal of contaminants of emerging concern by membranes in water and wastewater: A review. Chem. Eng. J. 2018, 335, 896–914. [CrossRef]spa
dcterms.referencesLewis, W.J.T.; Mattsson, T.; Chew, Y.M.J.; Bird, M.R. Investigation of cake fouling and pore blocking phenomena using fluid dynamic gauging and critical flux models. J. Membr. Sci. 2017, 533, 38–47. [CrossRef]spa
dcterms.referencesVan der Bruggen, B.; Mänttäri, M.; Nyström, M. Drawbacks of applying nanofiltration and how to avoid them: A review. Separ. Purif. Technol. 2008, 63, 251–263. [CrossRef]spa
dcterms.referencesAhmed, S.F.; Mofijur, M.; Nuzhat, S.; Chowdhury, A.T.; Rafa, N.; Uddin, M.A.; Inayat, A.; Mahlia, T.M.I.; Ong, H.C.; Chia, W.Y.; et al. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater. 2021, 416, 125912. [CrossRef]spa
dc.identifier.doihttps://doi.org/10.3390/w13172353
dc.publisher.placeColombiaspa
dc.relation.citationeditionVol.13 No.17.(2021)spa
dc.relation.citationendpage24spa
dc.relation.citationissue17(2021)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume13spa
dc.relation.citesLeyva-Díaz, J. C., Batlles-delaFuente, A., Molina-Moreno, V., Sánchez Molina, J., & Belmonte-Ureña, L. J. (2021). Removal of Pharmaceuticals from Wastewater: Analysis of the Past and Present Global Research Activities. Water, 13(17), 2353.
dc.relation.ispartofjournalWaterspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalpollutant removaleng
dc.subject.proposalpharmaceuticalseng
dc.subject.proposalwastewatereng
dc.subject.proposalsustainable developmenteng
dc.subject.proposalbibliometric analysiseng
dc.subject.proposaltreatment processeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem