Mostrar el registro sencillo del ítem
Cytogenotoxic effect of propanil using the Lens culinaris Med and Allium cepa L test
dc.contributor.author | SALAZAR MERCADO, SEIR ANTONIO | |
dc.contributor.author | Quintero Caleño, Jesús David | |
dc.contributor.author | Rojas, Jhan | |
dc.date.accessioned | 2021-10-26T16:48:33Z | |
dc.date.available | 2021-10-26T16:48:33Z | |
dc.date.issued | 2020-02-12 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/423 | |
dc.description.abstract | Propanil can produce methemoglobinemia, hemolytic anemia, hepatotoxicity, metabolic disorder and nephrotoxicity. It also has a genotoxic effect, although it is not listed as a carcinogen and it continues to be applied excessively throughout the world. Consequently, in this study the cytogenotoxic effect of propanil was evaluated, using apical root cells of Allium cepa and Lens culinaris. In which, L. culinaris seeds and A. cepa bulbs were subjected to 6 treatments with propanil (2, 4, 6, 8, 10 and 12 mg L1 ) and to distilled water as control treatment. Subsequently, the root growth was measured every 24 h for 3 days. Next, the mitotic index and cellular anomalies were determined. Whereby, decreased root development was observed in all treatments. Likewise, greater inhibition of mitosis was evidenced in L. culinaris compared to A. cepa. In addition, chromosomal abnormalities, such as nucleus absence, sticky chromosomes in metaphase and binucleated cells, were present in most of the treatments. Thus, the presence of micronuclei and the results of L. culinaris, indicate the high cytogenotoxicity of propanil and the feasibility of this species as bioindicator. | eng |
dc.format.extent | 8 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Chemosphere | spa |
dc.relation.ispartof | Chemosphere ISSN: 0045-6535, 2020 vol:249 fasc: N/A págs: 1-8 , DOI:10.1016/j.chemosphere.2020.126193 | |
dc.rights | 2020 Elsevier Ltd. All rights reserved. | eng |
dc.source | https://www.sciencedirect.com/science/article/abs/pii/S0045653520303866?via%3Dihub#! | spa |
dc.title | Cytogenotoxic effect of propanil using the Lens culinaris Med and Allium cepa L test | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Abiles, J., Moreno-Torres, R., Moratalla, G., Casta no, J., P ~ erez, A.R., Mudarra, A., Machado, M.J., Planells, E., Perez de la Cruz, A., 2008. Efectos de la suplementacion con glutamina sobre el sistema antioxidante y la peroxidaci on lipídica en pacientes críticos con nutricion parenteral. Nutr. Hosp. 23 (4), 332e339. | spa |
dcterms.references | Alimba, C.G., Aladeyelu, A.M., Nwabisi, I.A., Bakare, A.A., 2018. Micronucleus cytome assay in the differential assessment of cytotoxicity and genotoxicity of cadmium and lead in Amietophrynus regularis. EXCLI Journal 17, 89e101. https://doi.org/ 10.17179/excli2017-887. | spa |
dcterms.references | Andrade-Vieira, L., Bernardes, P., Ferreira, M., 2018. Mutagenic effects of spent potliner and derivatives on Allium cepa L. and Lactuca sativa L.: a molecular approach. Chemosphere 208, 257e262. | spa |
dcterms.references | Arya, S.K., Mukherjee, A., 2014. Sensitivity of Allium cepa and Vicia faba towards cadmium toxicity. J. Soil Sci. Plant Nutr. 14, 447e458. https://doi.org/10.4067/ S071895162014005000035. | spa |
dcterms.references | Barnes, C.J., Lavy, T.L., Mattice, J.D., 1987. Exposure of non-applicator personnel and adjacent areas to aerially applied propanil. Bull. Environ. Contam. Toxicol. 39, 126e133. | spa |
dcterms.references | Bertan, A.S., Baumbach, F., Tonial, B., Pokrywiecki, S., Düsman, E., 2019. Assessment of phytoremediation potential of Allium cepa L. in raw sewage treatment. Braz. J. Biol. https://doi.org/10.1590/1519-6984.214278 (in press). | spa |
dcterms.references | Bortolotto, L.F.B., Barbosa, F.R., Silva, G., Bitencourt, T.A., Beleboni, R.O., Baek, S.J., et al., 2016. Cytotoxicity of transchalcone and licochalcone A against breast cancer cells is due to apoptosis induction and cell cycle arrest. Biomed. Pharmacother. 85, 425e433. https://doi.org/10.1016/j.biopha.2016.11.047. | spa |
dcterms.references | Bortolotto, L.F.B., Barbosa, F.R., Silva, G., Bitencourt, T.A., Beleboni, R.O., Baek, S.J., et al., 2016. Cytotoxicity of transchalcone and licochalcone A against breast cancer cells is due to apoptosis induction and cell cycle arrest. Biomed. Pharmacother. 85, 425e433. https://doi.org/10.1016/j.biopha.2016.11.047. | spa |
dcterms.references | Camp, N.E., 2007. Methemoglobinemia. J. Emerg. Nurs. 33, 172e174. | spa |
dcterms.references | Cao, Q., Rediske, R.R., Yao, L., Xie, L., 2018. Effect of microcystins on root growth, oxidative response, and exudation of rice (Oryza sativa). Ecotoxicol. Environ. Saf. 149, 143e149. https://doi.org/10.1016/j.ecoenv.2017.11.020. | spa |
dcterms.references | Carena, L., Minella, M., Barsotti, F., Brigante, M., Milan, M., Ferrero, A., Berto, S., Minero, C., Vione, D., 2017. Phototransformation of the herbicide propanil in paddy field water. Environ. Sci. Technol. 51, 2695e2704. https://doi.org/10.1021/ acs.est.6b05053. | spa |
dcterms.references | Causil, L., Coronado, J., Vega, M., Verbel, L., 2017. Efecto citotoxico del hipoclorito de sodio (NaClO), en celulas apicales de raíces de cebolla ( Allium cepa L.). Rev. Colomb. Ciencias Hortícolas 11 (1), 97e104. https://doi.org/10.17584/ rcch.2017v11i1.5662. | spa |
dcterms.references | Cavadía, T., Roche, M.M., Romero, R., 2018. Estimacion de la genotoxicidad del río Sinú mediante un bioensayo con Allium cepa l. en Montería, Cordoba-Colombia. Bistua Revista de la Facultad de Ciencias B asicas 16 (1), 174e184. https://doi.org/ 10.24054/01204211.v1.n1.2018.2941. | spa |
dcterms.references | Chiagoziem, A., Otuechere, S.O., Abarikwu, V.I., Olateju Animashaun, A.L., Oluwafemi, E.K., 2014. Protective effect of curcumin against the liver toxicity caused by propanil in rats. International Scholarly Research Notices, p. 8. https://doi.org/10.1155/2014/853697. Article ID 853697. | spa |
dcterms.references | Cisneros, P.E., 1995. La glutation reductasa y su importancia biomedica. Rev. Cubana Invest. Biomed. 14 (1) . | spa |
dcterms.references | Correa, Martins, M., Souza, V., Souza, T., 2016. Cytotoxic, genotoxic and mutagenic ^ effects of sewage sludge on Allium cepa. Chemosphere 148, 481e486. | spa |
dcterms.references | Cvjetko, P., Milosic, A., Domijan, A.M., Vinkovic, V.I., Tolic, S., Peharec, S.P., LetofskyPapst, I., Tkalec, M., Balen, B., 2017. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol. Environ. Saf. 137, 18e28. https://doi.org/10.1016/j.ecoenv.2016.11.009. | spa |
dcterms.references | Darren, R., Renate, H., Nick, B., Andrew, D., Mohamed, F., Michael, E., Peter, E., 2009. Clinical outcomes and kinetics of propanil following acute self-poisoning: a prospective case series. BMC Clin. Pharmacol. 9, 3. https://doi.org/10.1186/1472- 6904-9-3. | spa |
dcterms.references | Datta, S., Singh, J., Singh, J., Singh, S., Singh, S., 2018. Assessment of genotoxic effects of pesticide and vermicompost treated soil with Allium cepa test. Sustain Environ Res 28 (4), 171e178. https://doi.org/10.1016/j.serj.2018.01.005. | spa |
dcterms.references | Dawson, A., Eddleston, M., Senarathna, L., et al., 2010. Acute human lethal toxicity of agricultural pesticides: a prospective cohort study. PLoS Med. 7. | spa |
dcterms.references | de Souza, R., de Souza, C., Bueno, O., Fontanetti, S., 2017. Genotoxicity evaluation of two metallic-insecticides using Allium cepa and Tradescantia pallida: a new alternative against leaf-cutting ants. Chemosphere 168, 1093e1099. https:// doi.org/10.1016/j.chemosphere.2016.10.098. | spa |
dcterms.references | Devine, M., Duke, S., Fedtke, C., 1993. Physiology of Herbicide Action. Prentice Hall, NJ. | spa |
dcterms.references | Disner, G.R., Rocha, M.V., Miranda, G.B., 2011. Avaliaçao da atividade mutag ~ enica do ^ Roundup® em Astyanax altiparanae (Chordata, Actinopterygii). Evidencia: biotecnologia e alimentos. 11 (1), 33e42. | spa |
dcterms.references | European Food Safety Authority (Efsa), 2011. Conclusion on the peer review of the pesticide risk assessment of the active substance propanil. EFSA Journal 9 (3), 1e63. https://doi.org/10.2903/jefsa.2011.2085. | spa |
dcterms.references | Fatma, F., Verma, S., Kamal, A., Srivastava, A., 2018. Monitoring of morphotoxic, cytotoxic and genotoxic potential of mancozeb using Allium assay. Chemosphere 195, 864e870. https://doi.org/10.1016/j.chemosphere.2017.12.052. | spa |
dcterms.references | Fendrych, M., Akhmanova, M., Merrin, J., Glanc, M., Hagihara, S., Takahashi, K., Uchida, N., Torii, K.U., Friml, J., 2018. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Native Plants 4 (7), 453e459. https://doi.org/10.1038/ s41477-018-0190-1. | spa |
dcterms.references | Firbas, P., Amon, T., 2014. Chromosome damage studies in the onion plant Allium cepa L. Caryologia 67, 25-35. | spa |
dcterms.references | García, M., García, G.G.R., Hernandez, J., Pieters, 2019. Dano oxidativo y comportamiento antioxidante de ascorbato y glutation en dos genotipos de cebolla con distinta sensibilidad ante la salinidad. Bioagro 31 (2), 81-90. | spa |
dcterms.references | Ghosh, M., Bhadra, S., Adegoke, A., Bandyopadhyay, M., Mukherjee, A., 2015. MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutat. Res. 774, 49e58. https:// doi.org/10.1016/j.mrfmmm.2015.03.004. | spa |
dcterms.references | Gomes, J., Tamara, J., Moreira, V., et al., 2014. Induction of cytotoxic and genotoxic effects of guandu river waters in the Allium cepa system. Revista Ambiente & Agua 10 (1), 48e58. https://doi.org/10.4136/ambi-agua.1487. | spa |
dcterms.references | Grube, A.H., Donaldson, D., Kiely, T., Wu, L., 2011. Pesticides Industry Sales and Usage: 2006 and 2007 Market Estimates. Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC. | spa |
dcterms.references | Haq, I., Kumar, S., Raj, A., Lohani, M., Satyanarayana, G., 2017. Genotoxicity assessment of pulp and paper mill effluent before and after bacterial degradation using Allium cepa test. Chemosphere 169, 642e650. https://doi.org/10.1016/ j.chemosphere.2016.11.101. | spa |
dcterms.references | Haq, Z., Raj, A., Markandeya, 2018. Biodegradation of Azure-B dye by Serratia liquefaciens and its validation by phytotoxicity, genotoxicity and cytotoxicity studies. Chemosphere 196, 58e68. https://doi.org/10.1016/ j.chemosphere.2017.12.153. | spa |
dcterms.references | Hemachandra, C.K., Pathiratne, A., 2015. Assessing toxicity of copper, cadmium and chromium levels relevant to discharge limits of industrial effluents into inland Surface waters using common onion, Allium cepa bioassay. Bull. Environ. Contam. Toxicol. 94, 199e203. https://doi.org/10.1007/s00128-014-1373-8. | spa |
dcterms.references | Hong-Mei, Y., Huang, X., 2016. Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant Cell Environ. 39, 120e135. https://doi.org/10.1111/ pce.12597. | spa |
dcterms.references | Horgan, F.G., Ramal, A.F., Bernal, C.C., Villegas, J.M., Stuart, A.M., Almazan, M.L.P., 2016. Applying ecological engineering for sustainable and resilient rice production systems. Procedia Food Sci. 6, 7e15. https://doi.org/10.1016/ j.profoo.2016.02.002. | spa |
dcterms.references | Hou, Y., Li, S.H., Dong, W.L., Yuan, Y., Wang, Y.C., Shen, W.J., Li, J.Q., Cui, Z.L., 2015. Community structure of a propanil-degrading consortium and the metabolic pathway of Microbacterium sp. strain T4-7. Int. Biodeterior. Biodegrad. 105, 80e89. | spa |
dcterms.references | Huda Bhuiyan, M.N., Kang, H., Kim, J.H., Kim, S., Kho, Y., Choi, K., 2019. Endocrine disruption by several aniline derivatives and related mechanisms in a human adrenal H295R cell line and adult male zebrafish. Ecotoxicol. Environ. Saf. 180, 326e332. https://doi.org/10.1016/j.ecoenv.2019.05.003. | spa |
dcterms.references | International Seed Testing Association (Ista), 2012. International Rules for Seed Testing. Seed Science and Technology. Zürich vol. 31. Suppl. ment. | spa |
dcterms.references | Kanawi, E., Van Scoy, A.R., Budd, R., Tjeerdema, R.S., 2016. Environmental fate and ecotoxicology of propanil: a review. Toxicol. Environ. Chem. 98 (7), 689e704. https://doi.org/10.1080/02772248.2015.1133816. | spa |
dcterms.references | Karaismailoglu, M.C., 2017. Assessments on the potential genotoxic effects of fipronil insecticide on Allium cepa somatic cells. Caryologia. https://doi.org/ 10.1080/00087114.2017.1371992. | spa |
dcterms.references | Khanna, N., Sharma, S., 2013. Allium cepa root chromosomal aberration assay: a review. Indian J Pharm Biol 1 (3), 105e119. | spa |
dcterms.references | Li, W.-M., Yin, D.-Q., Zhou, Y., Hu, S.-Q., Wang, L.-S., 2003. 3,4-Dichloroanilineinduced oxidative stress in liver of crucian carp (Carassius auratus). Ecotoxicol. Environ. Saf. 56 (2), 251e255. https://doi.org/10.1016/S0147-6513(02)00117-3. | spa |
dcterms.references | Li, X., Wang, L., Wang, S., Yang, Q., Zhou, Q., Huang, X., 2018. A preliminary analysis of the effects of bisphenol A on the plant root growth via changes in endogenous plant hormones. Ecotoxicol. Environ. Saf. 150, 152e158. https://doi.org/ 10.1016/j.ecoenv.2017.12.031. | spa |
dcterms.references | Liman, R., Cigerci, I.H., Akyıl, D., Eren, Y., Konuk, M., 2011. Determination of genotoxicity of fenaminosulf by Allium and comet tests. Pestic. Biochem. Physiol. 99 (1), 61-64. | spa |
dcterms.references | Marques, R., Oehmen, A., Carvalho, G., Reis, M.A., 2015. Modelling the biodegradation kinetics of the herbicide propanil and its metabolite 3,4-dichloroaniline. Environ. Sci. Pollut. Res. 22, 6687-6695. | spa |
dcterms.references | Martins, M., Ventura de Souza, V., da Silva, T., 2016. Cytotoxic, genotoxic and mutagenic effects of sewage sludge on Allium cepa. Chemosphere 148, 481e486. https://doi.org/10.1016/j.chemosphere.2016.01.071. | spa |
dcterms.references | Milan, M., Vidotto, F., Piano, S., Negre, M., Ferrero, A., 2012. Dissipation of propanil and 3,4- dichloroaniline in three different rice management systems. J. Environ. Qual. 41, 1487e1496. | spa |
dcterms.references | Mitsou, K., Koulianou, A., Lambropoulou, D., Pappas, P., Albanis, T., Lekka, M., 2006. Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide Propanil in the aquatic plant Lemna minor. Chemosphere 62 (2), 275e284. https://doi.org/10.1016/j.chemosphere.2005.05.026. | spa |
dcterms.references | Modlitbova, P., Po rízka, P., Novotný, K., Drbohlavova, J., Chamradov a, I., Farka, Z., Zl amalova-Gargo sov a, H., Romih, T., Kaiser, J., 2018. Short-term assessment of cadmium toxicity and uptake from different types of Cd-based Quantum Dots in the model plant Allium cepa L. Ecotoxicol. Environ. Saf. 153, 23e31. https:// doi.org/10.1016/j.ecoenv.2018.01.044. | spa |
dcterms.references | Moreira, I., Narciso-da-Rocha, C., Lopes, A.R., Carvalho, G., Lobo-da-Cunha, A., Whitman, W.B., Snauwaert, C., Vandamme, P., Manaia, C.M., Nunes, O.C., 2017. Oryzisolibacter propanilivorax gen. nov., sp. nov., a propanil-degrading bacterium. Int. J. Syst. Evol. Microbiol. 67 (10), 3752e3758. https://doi.org/10.1099/ ijsem.0.002184 | spa |
dcterms.references | Noori, R., Lorestani, B., Yousefi, N., Kolahchi, N., 2012. The effect of oil pollution on Lathyrus sativus and Lens culinaris with potential of phytoremediation. Journal of Chemical Health Risks 2 (3), 17e20. https://doi.org/10.22034/ JCHR.2018.544001. | spa |
dcterms.references | Ogeleka, D.F., Okieimen, F.E., Ekpudi, F.O., Tudararo-Aherobo, L.E., 2016. Short-term phyto-toxicity consequences of a nonselective herbicide glyphosate (Roundup™) on the growth of onions (Allium cepa Linn.). Afr. J. Biotechnol. 15 (18), 740e744. https://doi.org/10.5897/AJB2014.14355. | spa |
dcterms.references | Okayi, R.G., Tachia, M.U., Ataguba, G.A., Dikwahal, S.H., 2013. Toxicity of the herbicide propanil on Oreochromis niloticus fingerlings. J. Fish. Aquat. Sci. 8, 233-237. | spa |
dcterms.references | Otuechere, C.A., Ayoade, F., Arogundade, O.J., 2019. Impact of an acylanilide herbicide propanil on biochemical indices in kidney of diabetic rats. Asian J. Biological Sci. 12, 210e216. https://doi.org/10.3923/ajbs.2019.210.216. | spa |
dcterms.references | Patino, T.C., 2010. Variaci ~ on somaclonal y selecci on in vitro con toxinas como her- ramienta en la búsqueda de resistencia a enfermedades en plantas: revision. Revista de Investigacion Agraria y Ambiental 1 (1), 7 -15. | spa |
dcterms.references | Patlolla, A.K., Berry, A., May, L.B., Tchounwou, P.B., 2012. Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int. J. Environ. Res. Publ. Health 9 (12), 1649-1662. | spa |
dcterms.references | Pedroso, R.M., Al-Khatib, K., Alarcon-Reverte, R., Fischer, A.J., 2016. A psbA mutation (Val219 to Ile) causes resistance to propanil and increased susceptibility to bentazon in Cyperus difformis. Pest Manag. Sci. 72 (9), 1673e1680. https:// doi.org/10.1002/ps.4267. | spa |
dcterms.references | Pereira, J.L., Duarte, M.C., Gonçalves, F., 2007. Short- and long-term responses of Daphnia spp. to propanil exposures in distinct food supply scenarios. Ecotoxicol. Environ. Saf. 68 (3), 386e396. https://doi.org/10.1016/j.ecoenv.2006.10.012. | spa |
dcterms.references | Pereira, A.C., Silva, N.C., de Almeida, L.M., 2017. Potential toxicologico de Lafoensia pacari (Lythraceae) usando o sistema teste Allium cepa como bioindicador. IV Congresso de Ensino. Pesquisa e Extensao da UEG 4 . | spa |
dcterms.references | Prajitha, V., Thoppil, J., 2016. Genotoxic and antigenotoxic potential of the aqueous leaf extracts of Amaranthus spinosus Linn. using Allium cepa assay. South Afr. J. Bot. 102, 18e25. https://doi.org/10.1016/j.sajb.2015.06.018. | spa |
dcterms.references | Primel, E.G., Zanella, R., Kurz, M.H.S., Goncalves, F.F., Martins, M.L., Machado, S.L.O., Marchesan, E., 2007. Risk assessment of surface water contamination by herbicide residues: monitoring of propanil degradation in irrigated rice field waters using HPLC-UV and confirmation by GC-MS. J. Braz. Chem. Soc. 18, 585e589. | spa |
dcterms.references | Richards, S.M., McClure, G.Y., Lavy, T.L., Mattice, J.D., Keller, R.J., Gandy, J., 2001. Propanil (3,4-dichloropropionanilide) particulate concentrations within and near the residences of families living adjacent to aerially sprayed rice fields. Arch. Environ. Contam. Toxicol. 41, 112e116. https://doi.org/10.1007/ s002440010227 | spa |
dcterms.references | Rocha-Santos, C., Bastos, F.F., Dantas, R.F., Hauser-Davis, R.A., Rodrigues, L.C., Cunha, B.V., Cunha, B.J., 2018. Glutathione peroxidase and glutathione Stransferase in blood and liver from a hypoxia-tolerant fish under oxygen deprivation. Ecotoxicol. Environ. Saf. 163, 604e611. https://doi.org/10.1016/ j.ecoenv.2018.06.089. | spa |
dcterms.references | Salazar, S.A., Botello, E.A.D., 2018. Viabilidad de semillas de Glycine max (l.) Utilizando la prueba de tetrazolio. RIAA 9 (2), 89e98. https://doi.org/10.22490/ 21456453.2270. | spa |
dcterms.references | Salazar, S., Maldonado, H., 2019. Evaluation of cytotoxic potential of chlorpyrifos using Lens culinaris Med as efficient bioindicator. Ecotoxicol. Environ. Saf. 183, 109528. https://doi.org/10.1016/j.ecoenv.2019.109528. | spa |
dcterms.references | Salazar, S., Quintero, J., 2020. Cytotoxic evaluation of glyphosate, using Allium cepa Las bioindicator. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134452, 700. | spa |
dcterms.references | Salazar, S., Quintero, Botello, E., 2020. Optimizacion de la prueba de tetrazolio para evaluar la vialidad en semillas de Solanum lycopersicum L, 21. Cienc Tecnol Agropecuaria. | spa |
dcterms.references | Salazar-Mercado, S., Maldonado-Bayona, H., Quintero-Caleno, J., 2018. Evaluaci ~ on de la calidad fisiologica de las semillas de Linum usitatissimum L. con la prueba de tetrazolio. Av. Invest. Agropecu. 22 (3), 46e56. http://ww.ucol.mx/revaia/ portal/pdf/2018/sept/3.pdf. | spa |
dcterms.references | Salazar-Mercado, S.A., Torres-Leon, C.A., Rojas-Su arez, J.P., 2019. Cytotoxic evaluation of sodium hypochlorite, using Pisum sativum L as effective bioindicator. Ecotoxicol. Environ. Saf. 173, 71e76. https://doi.org/10.1016/ j.ecoenv.2019.02.027. | spa |
dcterms.references | Salazar, S., Maldonado, H., 2020. Evaluation of the cytotoxic potential of sodium hypochlorite using meristematic root cells of Lens culinaris Med. Sci. Total Environ. 701, 134992. https://doi.org/10.1016/j.scitotenv.2019.134992. | spa |
dcterms.references | Sancho, E., Andreau, O., Villarroel, M.J., Fern andez-Vega, C., Tecles, F., MartínezSubiela, S., Ceron, J.J., Ferrando, M.D., 2017. European eel (Anguilla anguilla) plasma biochemistry alerts about propanil stress. J. Pestic. Sci. 42 (1), 7e15. https://doi.org/10.1584/jpestics.D16-062. | spa |
dcterms.references | Schafer, R., Ognibene, T., Malfatti, M., Turteltaub, K.W., Barnett, J.B., 2018. Comparative pharmacokinetics of high and low doses of the herbicide propanil in mice. Chem. Res. Toxicol. 31 (10), 1080e1085. https://doi.org/10.1021/ acs.chemrestox.8b00151. | spa |
dcterms.references | Shihana, F., Dawson, A.H., Dobbins, T., Dissanayake, D., Buckley, N.A., 2016. A bedside test for methaemoglobinemia improved antidote use in propanil poisoning. Clin. Toxicol. 54 (7), 576e580. https://doi.org/10.1080/ 15563650.2016.1177651. | spa |
dcterms.references | Silveira, G., Lima, M., dos Reis, G., Palmieri, M., Andrade-Vieria, L., 2017. Toxic effects of environmental pollutants: comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere 178, 359e367. https://doi.org/10.1016/ j.chemosphere.2017.03.048. | spa |
dcterms.references | Triana, V.T.M., Henao, M.L.M., Bernal, B.M.H., 2016. Toxicidad del herbicida propanil (propanil trust® 500ec) en embriones y renacuajos de tres especies de anuros. Acta Biol. Colomb. 21 (3), 627e634. https://doi.org/10.15446/abc.v21n3.54845. | spa |
dcterms.references | Ventura-Camargo, B., de Angelis, D., Marin-Morales, M., 2016. Assessment of the cytotoxic, genotoxic and mutagenic effects of the commercial black dye in Allium cepa cells before and after bacterial biodegradation treatment. Chemosphere 161, 325-332. | spa |
dcterms.references | Vergara, Q.F., Quijano-Jara, C., 2017. Efecto del extracto acuoso de Moringa oleifera S.A. Salazar Mercado et al. / Chemosphere 249 (2020) 126193 7 sobre el índice mitotico y la frecuencia de micronucleos en Allium cepa. REBIOL 37 (2), 5-13. | spa |
dcterms.references | Verma, S., Srivastava, A., 2018. Morphotoxicity and cytogenotoxicity of pendimethalin in the test plant Allium cepa L. - a biomarker based study. Chemosphere 206, 248-254. | spa |
dcterms.references | Villarroel, M.J., Sancho, E., Andreu-Moliner, E., Ferrando, M.D., 2013. Caloric content of Daphnia magna as reflect of Propanil stress during a short-term exposure and its relationship to long-term responses. Environ. Toxicol. Pharmacol. 35, 465e472. https://doi.org/10.1016/j.etap.2013.02.012. | spa |
dcterms.references | Zhang, L., Hu, Q., Hang, P., Zhou, X., Jiang, J., 2019. Characterization of an arylamidase from a newly isolated propanil-transforming strain of Ochrobactrum sp. PP-2. Ecotoxicol. Environ. Saf. 167, 122e129. https://doi.org/10.1016/ j.ecoenv.2018.09.127. | spa |
dc.identifier.doi | 10.1016/j.chemosphere.2020.126193 | |
dc.publisher.place | Reino Unido | spa |
dc.relation.citationedition | Vol. 249 (2020) 126193 | spa |
dc.relation.citationendpage | 8 | spa |
dc.relation.citationissue | 126193 (2020) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 249 | spa |
dc.relation.cites | S. A. Salazar Mercado, J. D. Quintero Caleño y J. P. Rojas Suárez, "Cytogenotoxic effect of propanil using the Lens culinaris Med and Allium cepa L test", Chemosphere, vol. 249, n.º 126193, pp. 1–8, febrero de 2020. Accedido el 26 de octubre de 2021. [En línea]. Disponible: https://doi.org/10.1016/j.chemosphere.2020.126193 | |
dc.relation.ispartofjournal | Chemosphere | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.subject.proposal | Bioindicator | eng |
dc.subject.proposal | Environmental toxicity | eng |
dc.subject.proposal | Micronuclei | eng |
dc.subject.proposal | Mutagenic | eng |
dc.subject.proposal | Nuclear abnormalities | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Ambiente y Vida - GIAV [124]