Mostrar el registro sencillo del ítem

dc.contributor.authorSALAZAR MERCADO, SEIR ANTONIO
dc.contributor.authorQuintero Caleño, Jesús David
dc.contributor.authorRojas, Jhan
dc.date.accessioned2021-10-26T16:48:33Z
dc.date.available2021-10-26T16:48:33Z
dc.date.issued2020-02-12
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/423
dc.description.abstractPropanil can produce methemoglobinemia, hemolytic anemia, hepatotoxicity, metabolic disorder and nephrotoxicity. It also has a genotoxic effect, although it is not listed as a carcinogen and it continues to be applied excessively throughout the world. Consequently, in this study the cytogenotoxic effect of propanil was evaluated, using apical root cells of Allium cepa and Lens culinaris. In which, L. culinaris seeds and A. cepa bulbs were subjected to 6 treatments with propanil (2, 4, 6, 8, 10 and 12 mg L1 ) and to distilled water as control treatment. Subsequently, the root growth was measured every 24 h for 3 days. Next, the mitotic index and cellular anomalies were determined. Whereby, decreased root development was observed in all treatments. Likewise, greater inhibition of mitosis was evidenced in L. culinaris compared to A. cepa. In addition, chromosomal abnormalities, such as nucleus absence, sticky chromosomes in metaphase and binucleated cells, were present in most of the treatments. Thus, the presence of micronuclei and the results of L. culinaris, indicate the high cytogenotoxicity of propanil and the feasibility of this species as bioindicator.eng
dc.format.extent8 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherChemospherespa
dc.relation.ispartofChemosphere ISSN: 0045-6535, 2020 vol:249 fasc: N/A págs: 1-8 , DOI:10.1016/j.chemosphere.2020.126193
dc.rights2020 Elsevier Ltd. All rights reserved.eng
dc.sourcehttps://www.sciencedirect.com/science/article/abs/pii/S0045653520303866?via%3Dihub#!spa
dc.titleCytogenotoxic effect of propanil using the Lens culinaris Med and Allium cepa L testeng
dc.typeArtículo de revistaspa
dcterms.referencesAbiles, J., Moreno-Torres, R., Moratalla, G., Casta no, J., P ~ erez, A.R., Mudarra, A., Machado, M.J., Planells, E., Perez de la Cruz, A., 2008. Efectos de la suplementacion con glutamina sobre el sistema antioxidante y la peroxidaci on lipídica en pacientes críticos con nutricion parenteral. Nutr. Hosp. 23 (4), 332e339.spa
dcterms.referencesAlimba, C.G., Aladeyelu, A.M., Nwabisi, I.A., Bakare, A.A., 2018. Micronucleus cytome assay in the differential assessment of cytotoxicity and genotoxicity of cadmium and lead in Amietophrynus regularis. EXCLI Journal 17, 89e101. https://doi.org/ 10.17179/excli2017-887.spa
dcterms.referencesAndrade-Vieira, L., Bernardes, P., Ferreira, M., 2018. Mutagenic effects of spent potliner and derivatives on Allium cepa L. and Lactuca sativa L.: a molecular approach. Chemosphere 208, 257e262.spa
dcterms.referencesArya, S.K., Mukherjee, A., 2014. Sensitivity of Allium cepa and Vicia faba towards cadmium toxicity. J. Soil Sci. Plant Nutr. 14, 447e458. https://doi.org/10.4067/ S071895162014005000035.spa
dcterms.referencesBarnes, C.J., Lavy, T.L., Mattice, J.D., 1987. Exposure of non-applicator personnel and adjacent areas to aerially applied propanil. Bull. Environ. Contam. Toxicol. 39, 126e133.spa
dcterms.referencesBertan, A.S., Baumbach, F., Tonial, B., Pokrywiecki, S., Düsman, E., 2019. Assessment of phytoremediation potential of Allium cepa L. in raw sewage treatment. Braz. J. Biol. https://doi.org/10.1590/1519-6984.214278 (in press).spa
dcterms.referencesBortolotto, L.F.B., Barbosa, F.R., Silva, G., Bitencourt, T.A., Beleboni, R.O., Baek, S.J., et al., 2016. Cytotoxicity of transchalcone and licochalcone A against breast cancer cells is due to apoptosis induction and cell cycle arrest. Biomed. Pharmacother. 85, 425e433. https://doi.org/10.1016/j.biopha.2016.11.047.spa
dcterms.referencesBortolotto, L.F.B., Barbosa, F.R., Silva, G., Bitencourt, T.A., Beleboni, R.O., Baek, S.J., et al., 2016. Cytotoxicity of transchalcone and licochalcone A against breast cancer cells is due to apoptosis induction and cell cycle arrest. Biomed. Pharmacother. 85, 425e433. https://doi.org/10.1016/j.biopha.2016.11.047.spa
dcterms.referencesCamp, N.E., 2007. Methemoglobinemia. J. Emerg. Nurs. 33, 172e174.spa
dcterms.referencesCao, Q., Rediske, R.R., Yao, L., Xie, L., 2018. Effect of microcystins on root growth, oxidative response, and exudation of rice (Oryza sativa). Ecotoxicol. Environ. Saf. 149, 143e149. https://doi.org/10.1016/j.ecoenv.2017.11.020.spa
dcterms.referencesCarena, L., Minella, M., Barsotti, F., Brigante, M., Milan, M., Ferrero, A., Berto, S., Minero, C., Vione, D., 2017. Phototransformation of the herbicide propanil in paddy field water. Environ. Sci. Technol. 51, 2695e2704. https://doi.org/10.1021/ acs.est.6b05053.spa
dcterms.referencesCausil, L., Coronado, J., Vega, M., Verbel, L., 2017. Efecto citotoxico del hipoclorito de sodio (NaClO), en celulas apicales de raíces de cebolla ( Allium cepa L.). Rev. Colomb. Ciencias Hortícolas 11 (1), 97e104. https://doi.org/10.17584/ rcch.2017v11i1.5662.spa
dcterms.referencesCavadía, T., Roche, M.M., Romero, R., 2018. Estimacion de la genotoxicidad del río Sinú mediante un bioensayo con Allium cepa l. en Montería, Cordoba-Colombia. Bistua Revista de la Facultad de Ciencias B asicas 16 (1), 174e184. https://doi.org/ 10.24054/01204211.v1.n1.2018.2941.spa
dcterms.referencesChiagoziem, A., Otuechere, S.O., Abarikwu, V.I., Olateju Animashaun, A.L., Oluwafemi, E.K., 2014. Protective effect of curcumin against the liver toxicity caused by propanil in rats. International Scholarly Research Notices, p. 8. https://doi.org/10.1155/2014/853697. Article ID 853697.spa
dcterms.referencesCisneros, P.E., 1995. La glutation reductasa y su importancia biomedica. Rev. Cubana Invest. Biomed. 14 (1) .spa
dcterms.referencesCorrea, Martins, M., Souza, V., Souza, T., 2016. Cytotoxic, genotoxic and mutagenic ^ effects of sewage sludge on Allium cepa. Chemosphere 148, 481e486.spa
dcterms.referencesCvjetko, P., Milosic, A., Domijan, A.M., Vinkovic, V.I., Tolic, S., Peharec, S.P., LetofskyPapst, I., Tkalec, M., Balen, B., 2017. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol. Environ. Saf. 137, 18e28. https://doi.org/10.1016/j.ecoenv.2016.11.009.spa
dcterms.referencesDarren, R., Renate, H., Nick, B., Andrew, D., Mohamed, F., Michael, E., Peter, E., 2009. Clinical outcomes and kinetics of propanil following acute self-poisoning: a prospective case series. BMC Clin. Pharmacol. 9, 3. https://doi.org/10.1186/1472- 6904-9-3.spa
dcterms.referencesDatta, S., Singh, J., Singh, J., Singh, S., Singh, S., 2018. Assessment of genotoxic effects of pesticide and vermicompost treated soil with Allium cepa test. Sustain Environ Res 28 (4), 171e178. https://doi.org/10.1016/j.serj.2018.01.005.spa
dcterms.referencesDawson, A., Eddleston, M., Senarathna, L., et al., 2010. Acute human lethal toxicity of agricultural pesticides: a prospective cohort study. PLoS Med. 7.spa
dcterms.referencesde Souza, R., de Souza, C., Bueno, O., Fontanetti, S., 2017. Genotoxicity evaluation of two metallic-insecticides using Allium cepa and Tradescantia pallida: a new alternative against leaf-cutting ants. Chemosphere 168, 1093e1099. https:// doi.org/10.1016/j.chemosphere.2016.10.098.spa
dcterms.referencesDevine, M., Duke, S., Fedtke, C., 1993. Physiology of Herbicide Action. Prentice Hall, NJ.spa
dcterms.referencesDisner, G.R., Rocha, M.V., Miranda, G.B., 2011. Avaliaçao da atividade mutag ~ enica do ^ Roundup® em Astyanax altiparanae (Chordata, Actinopterygii). Evidencia: biotecnologia e alimentos. 11 (1), 33e42.spa
dcterms.referencesEuropean Food Safety Authority (Efsa), 2011. Conclusion on the peer review of the pesticide risk assessment of the active substance propanil. EFSA Journal 9 (3), 1e63. https://doi.org/10.2903/jefsa.2011.2085.spa
dcterms.referencesFatma, F., Verma, S., Kamal, A., Srivastava, A., 2018. Monitoring of morphotoxic, cytotoxic and genotoxic potential of mancozeb using Allium assay. Chemosphere 195, 864e870. https://doi.org/10.1016/j.chemosphere.2017.12.052.spa
dcterms.referencesFendrych, M., Akhmanova, M., Merrin, J., Glanc, M., Hagihara, S., Takahashi, K., Uchida, N., Torii, K.U., Friml, J., 2018. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Native Plants 4 (7), 453e459. https://doi.org/10.1038/ s41477-018-0190-1.spa
dcterms.referencesFirbas, P., Amon, T., 2014. Chromosome damage studies in the onion plant Allium cepa L. Caryologia 67, 25-35.spa
dcterms.referencesGarcía, M., García, G.G.R., Hernandez, J., Pieters, 2019. Dano oxidativo y comportamiento antioxidante de ascorbato y glutation en dos genotipos de cebolla con distinta sensibilidad ante la salinidad. Bioagro 31 (2), 81-90.spa
dcterms.referencesGhosh, M., Bhadra, S., Adegoke, A., Bandyopadhyay, M., Mukherjee, A., 2015. MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutat. Res. 774, 49e58. https:// doi.org/10.1016/j.mrfmmm.2015.03.004.spa
dcterms.referencesGomes, J., Tamara, J., Moreira, V., et al., 2014. Induction of cytotoxic and genotoxic effects of guandu river waters in the Allium cepa system. Revista Ambiente & Agua 10 (1), 48e58. https://doi.org/10.4136/ambi-agua.1487.spa
dcterms.referencesGrube, A.H., Donaldson, D., Kiely, T., Wu, L., 2011. Pesticides Industry Sales and Usage: 2006 and 2007 Market Estimates. Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC.spa
dcterms.referencesHaq, I., Kumar, S., Raj, A., Lohani, M., Satyanarayana, G., 2017. Genotoxicity assessment of pulp and paper mill effluent before and after bacterial degradation using Allium cepa test. Chemosphere 169, 642e650. https://doi.org/10.1016/ j.chemosphere.2016.11.101.spa
dcterms.referencesHaq, Z., Raj, A., Markandeya, 2018. Biodegradation of Azure-B dye by Serratia liquefaciens and its validation by phytotoxicity, genotoxicity and cytotoxicity studies. Chemosphere 196, 58e68. https://doi.org/10.1016/ j.chemosphere.2017.12.153.spa
dcterms.referencesHemachandra, C.K., Pathiratne, A., 2015. Assessing toxicity of copper, cadmium and chromium levels relevant to discharge limits of industrial effluents into inland Surface waters using common onion, Allium cepa bioassay. Bull. Environ. Contam. Toxicol. 94, 199e203. https://doi.org/10.1007/s00128-014-1373-8.spa
dcterms.referencesHong-Mei, Y., Huang, X., 2016. Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant Cell Environ. 39, 120e135. https://doi.org/10.1111/ pce.12597.spa
dcterms.referencesHorgan, F.G., Ramal, A.F., Bernal, C.C., Villegas, J.M., Stuart, A.M., Almazan, M.L.P., 2016. Applying ecological engineering for sustainable and resilient rice production systems. Procedia Food Sci. 6, 7e15. https://doi.org/10.1016/ j.profoo.2016.02.002.spa
dcterms.referencesHou, Y., Li, S.H., Dong, W.L., Yuan, Y., Wang, Y.C., Shen, W.J., Li, J.Q., Cui, Z.L., 2015. Community structure of a propanil-degrading consortium and the metabolic pathway of Microbacterium sp. strain T4-7. Int. Biodeterior. Biodegrad. 105, 80e89.spa
dcterms.referencesHuda Bhuiyan, M.N., Kang, H., Kim, J.H., Kim, S., Kho, Y., Choi, K., 2019. Endocrine disruption by several aniline derivatives and related mechanisms in a human adrenal H295R cell line and adult male zebrafish. Ecotoxicol. Environ. Saf. 180, 326e332. https://doi.org/10.1016/j.ecoenv.2019.05.003.spa
dcterms.referencesInternational Seed Testing Association (Ista), 2012. International Rules for Seed Testing. Seed Science and Technology. Zürich vol. 31. Suppl. ment.spa
dcterms.referencesKanawi, E., Van Scoy, A.R., Budd, R., Tjeerdema, R.S., 2016. Environmental fate and ecotoxicology of propanil: a review. Toxicol. Environ. Chem. 98 (7), 689e704. https://doi.org/10.1080/02772248.2015.1133816.spa
dcterms.referencesKaraismailoglu, M.C., 2017. Assessments on the potential genotoxic effects of fipronil insecticide on Allium cepa somatic cells. Caryologia. https://doi.org/ 10.1080/00087114.2017.1371992.spa
dcterms.referencesKhanna, N., Sharma, S., 2013. Allium cepa root chromosomal aberration assay: a review. Indian J Pharm Biol 1 (3), 105e119.spa
dcterms.referencesLi, W.-M., Yin, D.-Q., Zhou, Y., Hu, S.-Q., Wang, L.-S., 2003. 3,4-Dichloroanilineinduced oxidative stress in liver of crucian carp (Carassius auratus). Ecotoxicol. Environ. Saf. 56 (2), 251e255. https://doi.org/10.1016/S0147-6513(02)00117-3.spa
dcterms.referencesLi, X., Wang, L., Wang, S., Yang, Q., Zhou, Q., Huang, X., 2018. A preliminary analysis of the effects of bisphenol A on the plant root growth via changes in endogenous plant hormones. Ecotoxicol. Environ. Saf. 150, 152e158. https://doi.org/ 10.1016/j.ecoenv.2017.12.031.spa
dcterms.referencesLiman, R., Cigerci, I.H., Akyıl, D., Eren, Y., Konuk, M., 2011. Determination of genotoxicity of fenaminosulf by Allium and comet tests. Pestic. Biochem. Physiol. 99 (1), 61-64.spa
dcterms.referencesMarques, R., Oehmen, A., Carvalho, G., Reis, M.A., 2015. Modelling the biodegradation kinetics of the herbicide propanil and its metabolite 3,4-dichloroaniline. Environ. Sci. Pollut. Res. 22, 6687-6695.spa
dcterms.referencesMartins, M., Ventura de Souza, V., da Silva, T., 2016. Cytotoxic, genotoxic and mutagenic effects of sewage sludge on Allium cepa. Chemosphere 148, 481e486. https://doi.org/10.1016/j.chemosphere.2016.01.071.spa
dcterms.referencesMilan, M., Vidotto, F., Piano, S., Negre, M., Ferrero, A., 2012. Dissipation of propanil and 3,4- dichloroaniline in three different rice management systems. J. Environ. Qual. 41, 1487e1496.spa
dcterms.referencesMitsou, K., Koulianou, A., Lambropoulou, D., Pappas, P., Albanis, T., Lekka, M., 2006. Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide Propanil in the aquatic plant Lemna minor. Chemosphere 62 (2), 275e284. https://doi.org/10.1016/j.chemosphere.2005.05.026.spa
dcterms.referencesModlitbova, P., Po rízka, P., Novotný, K., Drbohlavova, J., Chamradov a, I., Farka, Z., Zl amalova-Gargo sov a, H., Romih, T., Kaiser, J., 2018. Short-term assessment of cadmium toxicity and uptake from different types of Cd-based Quantum Dots in the model plant Allium cepa L. Ecotoxicol. Environ. Saf. 153, 23e31. https:// doi.org/10.1016/j.ecoenv.2018.01.044.spa
dcterms.referencesMoreira, I., Narciso-da-Rocha, C., Lopes, A.R., Carvalho, G., Lobo-da-Cunha, A., Whitman, W.B., Snauwaert, C., Vandamme, P., Manaia, C.M., Nunes, O.C., 2017. Oryzisolibacter propanilivorax gen. nov., sp. nov., a propanil-degrading bacterium. Int. J. Syst. Evol. Microbiol. 67 (10), 3752e3758. https://doi.org/10.1099/ ijsem.0.002184spa
dcterms.referencesNoori, R., Lorestani, B., Yousefi, N., Kolahchi, N., 2012. The effect of oil pollution on Lathyrus sativus and Lens culinaris with potential of phytoremediation. Journal of Chemical Health Risks 2 (3), 17e20. https://doi.org/10.22034/ JCHR.2018.544001.spa
dcterms.referencesOgeleka, D.F., Okieimen, F.E., Ekpudi, F.O., Tudararo-Aherobo, L.E., 2016. Short-term phyto-toxicity consequences of a nonselective herbicide glyphosate (Roundup™) on the growth of onions (Allium cepa Linn.). Afr. J. Biotechnol. 15 (18), 740e744. https://doi.org/10.5897/AJB2014.14355.spa
dcterms.referencesOkayi, R.G., Tachia, M.U., Ataguba, G.A., Dikwahal, S.H., 2013. Toxicity of the herbicide propanil on Oreochromis niloticus fingerlings. J. Fish. Aquat. Sci. 8, 233-237.spa
dcterms.referencesOtuechere, C.A., Ayoade, F., Arogundade, O.J., 2019. Impact of an acylanilide herbicide propanil on biochemical indices in kidney of diabetic rats. Asian J. Biological Sci. 12, 210e216. https://doi.org/10.3923/ajbs.2019.210.216.spa
dcterms.referencesPatino, T.C., 2010. Variaci ~ on somaclonal y selecci on in vitro con toxinas como her- ramienta en la búsqueda de resistencia a enfermedades en plantas: revision. Revista de Investigacion Agraria y Ambiental 1 (1), 7 -15.spa
dcterms.referencesPatlolla, A.K., Berry, A., May, L.B., Tchounwou, P.B., 2012. Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int. J. Environ. Res. Publ. Health 9 (12), 1649-1662.spa
dcterms.referencesPedroso, R.M., Al-Khatib, K., Alarcon-Reverte, R., Fischer, A.J., 2016. A psbA mutation (Val219 to Ile) causes resistance to propanil and increased susceptibility to bentazon in Cyperus difformis. Pest Manag. Sci. 72 (9), 1673e1680. https:// doi.org/10.1002/ps.4267.spa
dcterms.referencesPereira, J.L., Duarte, M.C., Gonçalves, F., 2007. Short- and long-term responses of Daphnia spp. to propanil exposures in distinct food supply scenarios. Ecotoxicol. Environ. Saf. 68 (3), 386e396. https://doi.org/10.1016/j.ecoenv.2006.10.012.spa
dcterms.referencesPereira, A.C., Silva, N.C., de Almeida, L.M., 2017. Potential toxicologico de Lafoensia pacari (Lythraceae) usando o sistema teste Allium cepa como bioindicador. IV Congresso de Ensino. Pesquisa e Extensao da UEG 4 .spa
dcterms.referencesPrajitha, V., Thoppil, J., 2016. Genotoxic and antigenotoxic potential of the aqueous leaf extracts of Amaranthus spinosus Linn. using Allium cepa assay. South Afr. J. Bot. 102, 18e25. https://doi.org/10.1016/j.sajb.2015.06.018.spa
dcterms.referencesPrimel, E.G., Zanella, R., Kurz, M.H.S., Goncalves, F.F., Martins, M.L., Machado, S.L.O., Marchesan, E., 2007. Risk assessment of surface water contamination by herbicide residues: monitoring of propanil degradation in irrigated rice field waters using HPLC-UV and confirmation by GC-MS. J. Braz. Chem. Soc. 18, 585e589.spa
dcterms.referencesRichards, S.M., McClure, G.Y., Lavy, T.L., Mattice, J.D., Keller, R.J., Gandy, J., 2001. Propanil (3,4-dichloropropionanilide) particulate concentrations within and near the residences of families living adjacent to aerially sprayed rice fields. Arch. Environ. Contam. Toxicol. 41, 112e116. https://doi.org/10.1007/ s002440010227spa
dcterms.referencesRocha-Santos, C., Bastos, F.F., Dantas, R.F., Hauser-Davis, R.A., Rodrigues, L.C., Cunha, B.V., Cunha, B.J., 2018. Glutathione peroxidase and glutathione Stransferase in blood and liver from a hypoxia-tolerant fish under oxygen deprivation. Ecotoxicol. Environ. Saf. 163, 604e611. https://doi.org/10.1016/ j.ecoenv.2018.06.089.spa
dcterms.referencesSalazar, S.A., Botello, E.A.D., 2018. Viabilidad de semillas de Glycine max (l.) Utilizando la prueba de tetrazolio. RIAA 9 (2), 89e98. https://doi.org/10.22490/ 21456453.2270.spa
dcterms.referencesSalazar, S., Maldonado, H., 2019. Evaluation of cytotoxic potential of chlorpyrifos using Lens culinaris Med as efficient bioindicator. Ecotoxicol. Environ. Saf. 183, 109528. https://doi.org/10.1016/j.ecoenv.2019.109528.spa
dcterms.referencesSalazar, S., Quintero, J., 2020. Cytotoxic evaluation of glyphosate, using Allium cepa Las bioindicator. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134452, 700.spa
dcterms.referencesSalazar, S., Quintero, Botello, E., 2020. Optimizacion de la prueba de tetrazolio para evaluar la vialidad en semillas de Solanum lycopersicum L, 21. Cienc Tecnol Agropecuaria.spa
dcterms.referencesSalazar-Mercado, S., Maldonado-Bayona, H., Quintero-Caleno, J., 2018. Evaluaci ~ on de la calidad fisiologica de las semillas de Linum usitatissimum L. con la prueba de tetrazolio. Av. Invest. Agropecu. 22 (3), 46e56. http://ww.ucol.mx/revaia/ portal/pdf/2018/sept/3.pdf.spa
dcterms.referencesSalazar-Mercado, S.A., Torres-Leon, C.A., Rojas-Su arez, J.P., 2019. Cytotoxic evaluation of sodium hypochlorite, using Pisum sativum L as effective bioindicator. Ecotoxicol. Environ. Saf. 173, 71e76. https://doi.org/10.1016/ j.ecoenv.2019.02.027.spa
dcterms.referencesSalazar, S., Maldonado, H., 2020. Evaluation of the cytotoxic potential of sodium hypochlorite using meristematic root cells of Lens culinaris Med. Sci. Total Environ. 701, 134992. https://doi.org/10.1016/j.scitotenv.2019.134992.spa
dcterms.referencesSancho, E., Andreau, O., Villarroel, M.J., Fern andez-Vega, C., Tecles, F., MartínezSubiela, S., Ceron, J.J., Ferrando, M.D., 2017. European eel (Anguilla anguilla) plasma biochemistry alerts about propanil stress. J. Pestic. Sci. 42 (1), 7e15. https://doi.org/10.1584/jpestics.D16-062.spa
dcterms.referencesSchafer, R., Ognibene, T., Malfatti, M., Turteltaub, K.W., Barnett, J.B., 2018. Comparative pharmacokinetics of high and low doses of the herbicide propanil in mice. Chem. Res. Toxicol. 31 (10), 1080e1085. https://doi.org/10.1021/ acs.chemrestox.8b00151.spa
dcterms.referencesShihana, F., Dawson, A.H., Dobbins, T., Dissanayake, D., Buckley, N.A., 2016. A bedside test for methaemoglobinemia improved antidote use in propanil poisoning. Clin. Toxicol. 54 (7), 576e580. https://doi.org/10.1080/ 15563650.2016.1177651.spa
dcterms.referencesSilveira, G., Lima, M., dos Reis, G., Palmieri, M., Andrade-Vieria, L., 2017. Toxic effects of environmental pollutants: comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere 178, 359e367. https://doi.org/10.1016/ j.chemosphere.2017.03.048.spa
dcterms.referencesTriana, V.T.M., Henao, M.L.M., Bernal, B.M.H., 2016. Toxicidad del herbicida propanil (propanil trust® 500ec) en embriones y renacuajos de tres especies de anuros. Acta Biol. Colomb. 21 (3), 627e634. https://doi.org/10.15446/abc.v21n3.54845.spa
dcterms.referencesVentura-Camargo, B., de Angelis, D., Marin-Morales, M., 2016. Assessment of the cytotoxic, genotoxic and mutagenic effects of the commercial black dye in Allium cepa cells before and after bacterial biodegradation treatment. Chemosphere 161, 325-332.spa
dcterms.referencesVergara, Q.F., Quijano-Jara, C., 2017. Efecto del extracto acuoso de Moringa oleifera S.A. Salazar Mercado et al. / Chemosphere 249 (2020) 126193 7 sobre el índice mitotico y la frecuencia de micronucleos en Allium cepa. REBIOL 37 (2), 5-13.spa
dcterms.referencesVerma, S., Srivastava, A., 2018. Morphotoxicity and cytogenotoxicity of pendimethalin in the test plant Allium cepa L. - a biomarker based study. Chemosphere 206, 248-254.spa
dcterms.referencesVillarroel, M.J., Sancho, E., Andreu-Moliner, E., Ferrando, M.D., 2013. Caloric content of Daphnia magna as reflect of Propanil stress during a short-term exposure and its relationship to long-term responses. Environ. Toxicol. Pharmacol. 35, 465e472. https://doi.org/10.1016/j.etap.2013.02.012.spa
dcterms.referencesZhang, L., Hu, Q., Hang, P., Zhou, X., Jiang, J., 2019. Characterization of an arylamidase from a newly isolated propanil-transforming strain of Ochrobactrum sp. PP-2. Ecotoxicol. Environ. Saf. 167, 122e129. https://doi.org/10.1016/ j.ecoenv.2018.09.127.spa
dc.identifier.doi10.1016/j.chemosphere.2020.126193
dc.publisher.placeReino Unidospa
dc.relation.citationeditionVol. 249 (2020) 126193spa
dc.relation.citationendpage8spa
dc.relation.citationissue126193 (2020)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume249spa
dc.relation.citesS. A. Salazar Mercado, J. D. Quintero Caleño y J. P. Rojas Suárez, "Cytogenotoxic effect of propanil using the Lens culinaris Med and Allium cepa L test", Chemosphere, vol. 249, n.º 126193, pp. 1–8, febrero de 2020. Accedido el 26 de octubre de 2021. [En línea]. Disponible: https://doi.org/10.1016/j.chemosphere.2020.126193
dc.relation.ispartofjournalChemospherespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalBioindicatoreng
dc.subject.proposalEnvironmental toxicityeng
dc.subject.proposalMicronucleieng
dc.subject.proposalMutageniceng
dc.subject.proposalNuclear abnormalitieseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem