Mostrar el registro sencillo del ítem


Caracterización molecular de mandarina (Citrus reticulata Blanco) mediante marcadores ISSR

dc.contributor.authorSUAREZ CONTRERAS, LILIANA YANETH
dc.contributor.authorArango Toloza, Michel Juliett
dc.contributor.authorSánchez Pabón, Izquel
dc.date.accessioned2021-10-25T23:41:32Z
dc.date.available2021-10-25T23:41:32Z
dc.date.issued2020-05-01
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/415
dc.description.abstractIn order to establish the molecular diversity of citrus production systems in Villa Sucre (Colombia), mainly “Creole mandarin”, this study analyzed C. reticulata farm samples using six ISSR molecular markers. A total of 61 polymorphisms were characterized; 42% were highly common with a mid- average polymorphic information content (PIC) of 0.42, indicating a highly polymorphic variation. Molecular relationships based on the Dice coefficient and the UPGMA algorithm showed the existing genetic relationships between the crop areas, grouping them in five separate clades and two main subgroups (MDS). This is the first molecular classification done in the area, setting the basis for mandarin crop molecular diversity and providing vital information for mandarin crop management programs.eng
dc.description.abstractCon el propósito de establecer la diversidad molecular de sistemas de producción de cítricos provenientes de Villa Sucre (Colombia), principalmente “mandarina criolla”, el estudio analizó muestras de fincas de C. reticulata utilizando seis marcadores moleculares ISSR. Se caracterizaron un total de 61 polimorfismos, el 42% de ellos fueron muy comunes, con un contenido de información polimórfica (PIC) promedio medio de 0.42 indicando una alta variación polimórfica. Relaciones moleculares basadas en el coeficiente de Dice y el algoritmo UPGMA, mostraron las relaciones genéticas existentes entre las áreas de cultivo, agrupándolas en cinco lados separados y dos subgrupos principales (MDS). Esta es la primera clasificación molecular realizada en el área, sienta las bases para la diversidad molecular del cultivo de mandarina y proporciona información vital para los programas de manejo del cultivo de mandarina.spa
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSociedad Colombiana de Ciencias Hortícolas (SCCH)spa
dc.relation.ispartofRevista SCCH ISSN: 2422-3719, 2020 vol:14 fasc: 2 págs: 168 - 177, DOI:10.17584/rcch.2020v14i2.9397
dc.rightsThe copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.eng
dc.sourcehttps://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/9397spa
dc.titleMolecular characterization of mandarins (Citrus reticulata Blanco) using ISSR markerseng
dc.titleCaracterización molecular de mandarina (Citrus reticulata Blanco) mediante marcadores ISSRspa
dc.typeArtículo de revistaspa
dcterms.referencesAlburquerque, J.A.C., S. Echeverrigaray, and T. Souza. 2008. Genetic relationships among South American species of Cunila D. Royen ex L. based on ISSR. Plant Syst. Evol. 274, 135-141. Doi: 10.1007/s00606-008-0037-8spa
dcterms.referencesBalzarini, M. and J. Di Rienzo. 2013. Info-Gen: Software para análisis estadístico de datos genéticos. Universidad Nacional de Córdoba, Córdoba, Argentina.spa
dcterms.referencesCámara de Comercio. 2019. Informes estudios económicos. Cadena de Citricos en Antioquia, Medellin, Colombia.spa
dcterms.referencesCui, C., Y. Li, Y. Liu, X. Li, S. Luo, Z. Zhang, R. Wu, G. liang, J. Sun, J. Peng, and P. Tian. 2017. Determination of genetic diversity among Saccharina germplasm using ISSR and RAPD markers. C. R. Biol. 340, 76-86. Doi: 10.1016/j.crvi.2016.11.005spa
dcterms.referencesde la Rosa-Hernández, M., J.E. Wong-Paz, D.B. Muñiz-Márquez, M.L. Carrillo-Inungaray, and J.M. Sánchez-González. 2016. Compuestos fenólicos bioactivos de la toronja (Citrus paradisi) y su importancia en la industria farmacéutica y alimentaria. Rev. Mex. Cienc. Farm. 47(2), 22-35.spa
dcterms.referencesFernández, J. 2018. Obtención de marcadores moleculares para la identificación de variedades de naranjas navel. Undergraduate thesis. Instituto Valenciano de Investigaciones Agrarias, Universidad de Valencia, Burjassot, Spain.spa
dcterms.referencesHeidari, E., M. Rahimmalek, S. Mohammadi, and M.H. Ehtemam. 2016. Genetic structure and diversity of ajowan (Trachyspermum ammi) populations based on molecular, morphological markers, and volatile oil content. Ind. Crops Prod. 92, 186-196. Doi: 10.1016/j. indcrop.2016.08.014spa
dcterms.referencesHogbin, P.M. and R. Peakall. 1999. Evaluation of the contribution of genetic research to the management of the endangered plant Zieria prostrata. Conserv. Biol. 13(3), 514-522.spa
dcterms.referencesJoshi, P. and V. Dhawan. 2007. Analysis of genetic diversity among Swertia chirayita genotypes. Biol. Plant. 51, 764-768. Doi: 10.1007/s10535-007-0156-zspa
dcterms.referencesKremer, D., S. Bolarić, D. Ballian, F. Bogunić, D. Stešević, K. Karlović, I. Kosalec, A. Vokurka, J.V. Rodríguez, M. Randić, N. Bezić, and V. Dunkić. 2015. Morphological, genetic and phytochemical variation of the endemic Teucrium arduini L. (Lamiaceae). Phytochemistry 116, 111-119. Doi: 10.1016/j.phytochem.2015.04.003spa
dcterms.referencesKumar, S., S.N. Jena, and N.K. Nair. 2010. ISSR polymorphism in Indian wild orange (Citrus indica Tanaka, Rutaceae) and related wild species in North-east India. Sci. Hortic. 123, 350-359. Doi: 10.1016/j. scienta.2009.10.008spa
dcterms.referencesLatorre, C., R. Rea, D. Sosa, S. Molina, J. Demey, R. Briceño, and O. De Sousa. 2013. Diversidad genética en germoplasma de Saccharum spp. mediante el uso de marcadores ISSR. Multiciencias 13(1), 7-15.spa
dcterms.referencesLezcano, C.C. 2018. Caracterización genética de pomelo ‘PARANÁ’ mediante marcadores moleculares. MSc thesis. Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina.spa
dcterms.referencesLiu, G.-D., G.-L. Chen, W. Li, and C.-X. Li. 2013. Genetic and phytochemical diversities of Cynomorium songaricum Rupr. in Northwest China indicated by ISSR markers and HPLC-fingerprinting. Biochem. Syst. Ecol. 48, 34-41. Doi: 10.1016/j.bse.2012.12.004spa
dcterms.referencesMarak, C.K. and M.A. Laskar. 2010. Analysis of phenetic relationship between Citrus indica Tanaka and a few commercially important citrus species by ISSR markers. Sci. Hortic. 124(3), 345-348. Doi: 10.1016/j. scienta.2010.01.014spa
dcterms.referencesMateus-Cagua, D. and J. Orduz-Rodríguez. 2015. Mandarina Dancy: una nueva alternativa para la citricultura del piedemonte llanero de Colombia. Corpoica Cienc. Tecnol. Agropecu.16(1), 105-112.spa
dcterms.referencesMedina-Medrano, J.R., N. Almaraz-Abarca, A.M. Sifuentes-Rincón, and S. Molina-Moret. 2016. Potential of ISSR to discriminate among species of Physalis (Solanaceae). J. Chem. Biol. Phys. Sci. 6(4), 1184-1195.spa
dcterms.referencesMei, Z., X. Zhang, X. Liu, S. Imani, and J. Fu. 2017. Genetic analysis of Canarium album in different areas of China by improved RAPD and ISSR. C. R. Biol. 340(11-12), 558-564. Doi: 10.1016/j.crvi.2017.09.006spa
dcterms.referencesMora-Vivas, S., Y. Morillo-Coronado, A.C. Morillo-Coronado, A. Caicedo-Arana, and J.E. Muñoz-Flores. 2013. Caracterización molecular con microsatélites aleatorios RAMs de 30 accesiones de mandarina (Citrus reticulata) del banco de germoplasma de Corpoica-Palmira. Investig. Agropecu. 10(2), 161-172.spa
dcterms.referencesMorillo-Coronado, A.C., J.A. González-Castillo, and Y. Morillo-Coronado. 2018. Caracterización de la diversidad genética de uchuva (Physalis peruviana L.) en Boyacá. Rev. Bio. Agro 16(1), 26-33. Doi: 10.18684/bsaa. v16n1.631spa
dcterms.referencesMorillo-Coronado, A.C., Y.P. Tovar-León, and Y. Morillo-Coronado. 2017. Characterization of lulo (Solanum quitoense Lam.) genetic diversity in the departamento of Boyacá, Colombia. Acta Agron. 66(3), 430-435. Doi: 10.15446/acag.v66n3.58997spa
dcterms.referencesMonfared, M.A., D. Samsampour, G.R. Sharifi-Sirchi, and F. Sadeghi. 2018. Assessment of genetic diversity in Salvadora persica L. based on inter simple sequence repeat (ISSR) genetic marker. J. Genet. Eng. Biotechnol. 16(2), 661-667. Doi: 10.1016/j.jgeb.2018.04.005spa
dcterms.referencesOrduz, J., J. Monroy, S. Barrera, V. Núñez, and G. Ligarreto. 2012. Caracterización morfo-agronómica y molecular de mandarina ‘Arrayana’ en el piedemonte del Meta (Colombia). Cienc. Tecnol. Agropecuaria 13(1), 5-12. Doi: 10.21930/rcta.vol13_num1_art:234spa
dcterms.referencesPalou, L., S.A. Valencia-Chamorro, and M.B. Pérez-Gago. 2015. Antifungal edible coatings for fresh citrus fruit: a review. Coatings 5(4), 962-986. Doi: 10.3390/ coatings5040962spa
dcterms.referencesPoyraz, I. 2016. Comparison of ITS, RAPD and ISSR from DNA-based genetic diversity techniques. C. R. Biol. 339(5-6), 171-178. Doi: 10.1016/j.crvi.2016.04.001spa
dcterms.referencesRahimmalek, M., B. Bahreininejad, M. Khorrami, B. Ebrahim, and S. Tabatabaei. 2009. Genetic variability and geographic differentiation in Thymus daenensis subsp. daenensis, an endangered medicinal plant, as revealed by Inter Simple Sequence (ISSR) markers. Biochem. Genet. 47, 831. Doi: 10.1007/s10528-009-9281-zspa
dcterms.referencesRamírez, J., P.J. Ordóñez, E. Narváez, S.C. Pinzón, M.F. Martínez, N. Murcia, and S.M. Salazar. 2014. Principales caracteristicas y tendencias del mercado de citricos en Colombia. Corpoica, Palmira, Colombia.spa
dcterms.referencesRoldán-Ruiz, I., J. Dendauw, E. Van Bockstaele, A. Depicker, and M. De Loose. 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp). Mol. Breed. 6, 125-134. Doi: 10.1023/A:1009680614564spa
dcterms.referencesSarwat, M. and P. Srivastava. 2008. Analysis of genetic diversity through AFLP, SAMPL, ISSR and RAPD markers in Tribulus terrestris, a medicinal herb. Plant Cell Rep. 27(3), 519-528. Doi: 10.1007/s00299-007-0478-5spa
dcterms.referencesSehgal, D., V.R. Rajpal, S.N. Raina, T. Sasanuma, and T. Sasakima. 2009. Assaying polymorphism at DNA level for genetic diversity diagnostics of the safflower (Carthamus tinctorius L.) world germplasm resources. Genetica 135, 457-470. Doi: 10.1007/s10709-008-9292-4spa
dcterms.referencesShahsavar, A.R., K. Izadpanah, E. Tafazoli, and B.E.S. Tabatabaei. 2007. Characterization of citrus germplasm including unknown variants by inter-simple sequence repeat ( ISSR ) markers. Sci. Hortic. 112(3), 310-314. Doi: 10.1016/j.scienta.2006.12.039spa
dcterms.referencesShilpha, J., T. Silambarasan, S.K. Pandian, and M. Ramesh. 2013. Assessment of genetic diversity in Solanum trilobatum L., an important medicinal plant from South India using RAPD and ISSR markers. Genet. Resour. Crop Evol. 60, 807-818. Doi: 10.1007/s10722-012-9951-2spa
dcterms.referencesSouza, C.P.F., C.F. Ferreira, E.H. de Souza, A.R.S. Neto, J.M. Marconcini, C.A.S. da Silva Ledo, and F.V.D. Souza. 2017. Genetic diversity and ISSR marker association with the quality of pineapple fiber for use in industry. Ind. Crops Prod. 104, 263-268. Doi: 10.1016/j. indcrop.2017.04.059spa
dcterms.referencesSuárez, L., and A. Osorio. 2017. Estandarización de un protocolo facil para la Extracción de ADN en Cítricos. In: I Congreso Internacional de Biotecnología. Universidad Francisco de Paula Santander, Cucuta, Colombia.spa
dcterms.referencesTiwari, V., B. Meena, K.N. Nair, D.K. Upreti, S. Tamta, and T.S. Rana. 2016. Assessment of genetic diversity and population structure of Bergenia stracheyi (Saxifragaceae) in the Western Himalaya (India). Biochem. Syst. Ecol. 70, 205-210. Doi: 10.1016/j.bse.2016.12.001spa
dcterms.referencesTomar, R.S., M.V. Parakhia, V.M. Rathod, J.R. Thakkar, S.M. Padhiyar, V.D. Thummar, H. Dalal, V.V. Kothari, J. Kheni, R.M. Dhingani, P. Sabara, and B.A. Golakiya. 2017. Molecular mapping and identification of QTLs responsible for charcoal rot resistance in Castor (Ricinus communis L.). Ind. Crops Prod. 95, 184-190. Doi: 10.1016/j.indcrop.2016.10.026spa
dcterms.referencesValera, F. 2018. Importancia y distribución de los citricos. In: Tecnoagro, Avances Tecnológicos y Agrícolas 124, https://tecnoagro.com.mx/no.-124/importancia-y-distribucion-de-los-citricos; consulted: May, 2019.spa
dcterms.referencesVenkat, S.K., P. Bommisetty, M.S. Patil, L. Reddy, and A. Chennareddy. 2014. The genetic linkage maps of Anthurium species based on RAPD, ISSR and SRAP markers. Sci. Hortic. 178, 132-137. Doi: 10.1016/j. scienta.2014.08.017spa
dcterms.referencesZheng, P., K. Zhang, and Z. Wang. 2011. Genetic diversity and gentiopicroside content of four Gentiana species in China revealed by ISSR and HPLC methods. Biochem. Syst. Ecol. 39, 704-710. Doi: 10.1016/j.bse.2011.06.002spa
dcterms.referencesZong, M., H.-L. Liu, Y.-X. Qiu, S.-Z. Yang, M.-S. Zhao, and C.-X. Fu. 2008. Genetic diversity and geographic differentiation in the threatened species Dysosma pleiantha in China as revealed by ISSR analysis. Biochem. Genet. 46(3-4), 180-196. Doi: 10.1007/s10528-007-9141-7spa
dcterms.referencesZou, Z., W. Xi, Y. Hu, C. Nie, and Z. Zhou. 2015. Antioxidant activity of Citrus fruits. Food Chem. 196, 885- 896. Doi: 10.1016/j.foodchem.2015.09.072spa
dcterms.referencesZvyagina, N.S., O.V. Dorogina, and P. Catalan, 2016. Genetic relatedness and taxonomy in closely related species of Hedysarum (Fabaceae). Biochem. Syst. Ecol. 69, 176- 187. Doi: 10.1016/j.bse.2016.10.001spa
dc.identifier.doi10.17584/rcch.2020v14i2.9397
dc.publisher.placeColombiaspa
dc.relation.citationeditionVol. 14 No. 2 (2020)spa
dc.relation.citationendpage177spa
dc.relation.citationissue2 (2020)spa
dc.relation.citationstartpage168spa
dc.relation.citationvolume14spa
dc.relation.citesL. Y. Suárez-Contreras, M. J. Arango-Toloza, and I. Sánchez-Pabón, “Molecular characterization of mandarin (Citrus reticulata Blanco) using ISSR markers”, Rev. Colomb. Cienc. Hortic., vol. 14, no. 2, pp. 168–177, May 2020.
dc.relation.ispartofjournalSociedad Colombiana de Ciencias Hortícolas (SCCH)spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.proposalpolimorfismospa
dc.subject.proposalvariabilidad genéticaspa
dc.subject.proposalFrutas cítricasspa
dc.subject.proposalVariedades naturalizadasspa
dc.subject.proposalFitomejoramientospa
dc.subject.proposalPolymorphismseng
dc.subject.proposalGenetic diversityeng
dc.subject.proposalCitrus fruitseng
dc.subject.proposalIntroduced varietieseng
dc.subject.proposalPlant breedingeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem