Mostrar el registro sencillo del ítem

dc.contributor.authorSALAZAR MERCADO, SEIR ANTONIO
dc.contributor.authorQuintero Caleño, Jesús David
dc.date.accessioned2021-10-23T04:01:37Z
dc.date.available2021-10-23T04:01:37Z
dc.date.issued2020-09-06
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/380
dc.description.abstractThe present study aimed to determine the toxic effect of malathion pesticide on root growth, cell division and the chromosomal abnormalities frequency using the L. culinaris test. Initially, the lentil seeds were subjected to different doses of malathion (0.0 0.5, 1, 2.5, 5, 10, 15, 20, 25 and 30 mgL-1) and during 24, 48, and 72 h, the root length was measured. Subsequently, at 72h, the mitotic index, mitotic inhibition, and cellular abnormalities were calculated for all treatments. According to the obtained results, it was visualized that the root growth was inversely proportional to the concentration of malathion at all times of exposure. After 72h of exposure, the lowest values of the mitotic index and inhibition were presented at malathion concentrations 20, 25 and 30 mgL-1. Additionally, micronuclei cell abnormalities, metaphase sticky chromosomes, split chromosomes, nuclear lesions, irregular anaphase, anaphase bridges, binucleated cells, absence of nucleus and telophase bridge were observed. Finally, Malathion induced mitodepressive and cytotoxic effects in the meristematic cells of the L. culinaris root tip. A high frequency of abnormality was found in the micronuclei, which represented an indicator of a high degree of toxicity at the cellular level.eng
dc.format.extent5 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherHeliyon
dc.relation.ispartofHeliyon ISSN: 2405-8440, 2020 vol:6 fasc: 9 págs: 1-5 , DOI:10.1016/j.heliyon.2020.e04846
dc.rights2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).eng
dc.sourcehttps://www.cell.com/heliyon/fulltext/S2405-8440(20)31689-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2405844020316893%3Fshowall%3Dtruespa
dc.titleDetermination of malathion's toxic effect on Lens culinaris Medik cell cycleeng
dc.typeArtículo de revistaspa
dcterms.referencesAbdelsalam, N., Megeed, A., Ali, H.M., Salem, M.Z.M., Al-Hayali, M., Elshikh, M.S., 2018. Genotoxicity effects of silver nanoparticles on wheat (Triticum aestivum L.) root tip cells. Ecotoxicol. Environ. Saf. 155, 76–85.spa
dcterms.referencesAdam, Z., Mikhael, E., El-Ashry, Z., Ehsan, N., Ali, R., 2014. Comparative cytogenetic and ultra-structural effects of storing dusted seeds of Vicia faba with insecticide malathion 1% and two insecticidal active plant products. World Appl. Sci. J. 32 (7), 1423–1436.spa
dcterms.referencesAkhgari, M., Abdollahi, M., Kebryaeezadeh, A., Hosseini, R., Sabzevari, O., 2003. Biochemical evidence for free radical-induced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Hum. Exp. Toxicol. 22 (4), 205–211.spa
dcterms.referencesAndrade-Vieira, L., Bernardes, P., Ferreira, M., 2018. Mutagenic effects of spent potliner and derivatives on Allium cepa L. and Lactuca sativa L.: a molecular approach. Chemosphere 208, 257–262.spa
dcterms.referencesBavcon, M., Trebse, P., Zupancic-Kralj, L., 2003. Investigations of the determination and transformations of diazinon and Malathion under environmental conditions using gas chromatography coupled with a flame ionisation detector. Chemosphere 50, 595–601.spa
dcterms.referencesBhatia, A., Kumar, Y., 2013. Cancer cell micronucleus: an update on clinical and diagnostic applications. Actapathologica, microbiologica, etimmunologica Scandinavica (121), 569–581.spa
dcterms.referencesBraga, A., Melo, A., de Oliveira Santos, J., Reis, A., Torres de Lima, T., et al., 2018. Toxicogenetic study of omeprazole and the modulatory effects of retinol palmitate and ascorbic acid on Allium cepa. Chemosphere 204, 220–226.spa
dcterms.referencesBujagic, I., Grujic, S., Lausevic, M., Hofmann, T., Micic, V., 2019. Emerging contaminants in sediment core from the iron gate I reservoir on the Danube river. Sci.Total Environ.spa
dcterms.referencesCliment, M.J., Coscoll a, C., Lopez, A., Barra, R., Urrutia, R., 2019. Legacy and current-use pesticides (CUPs) in the atmosphere of a rural area in central Chile, using passive air samplers. Sci. Total Environ.spa
dcterms.referencesCortesía, C., Marcano, L., Marcano, Elena, Zapata-Vívenes, Edgar, 2015. Inmunotoxicidad de malation y clorpirifos en la lombriz de tierra Eisenia sp. (Annelida: Oligochaeta). Saber. Revista Multidisciplinaria del Consejo de Investigacion de la Universidad de Oriente 27 (4), 530–536.spa
dcterms.referencesde Souza, R., de Souza, C., Bueno, O., Fontanetti, S., 2017. Genotoxicity evaluation of two metallic-insecticides using Allium cepa and Tradescantia pallida: a new alternative against leaf-cutting ants. Chemosphere 168, 1093–1099.spa
dcterms.referencesDoherty, A., Bryce, S.M., Bemis, J.C., 2016. The in vitro micronucleus assay. Gen. Toxicol. Test. 161–205.spa
dcterms.referencesElfikrie, N., Ho, Y., Zaidon, S., Juahir, H., Tan, E., 2020. Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi River Basin, Malaysia. Sci. Total Environ. 712, 136540.spa
dcterms.referencesFatma, F., Verma, S., Kamal, A., Srivastava, A., 2018. Monitoring of morphotoxic, cytotoxic and genotoxic potential of mancozeb using Allium assay. Chemosphere 195, 864–870.spa
dcterms.referencesFisher, S.W., Lydy, M.J., Barger, J., Landrum, P.F., 1993. Quantitative structure-activity relationships for predicting the toxicity of pesticides in aquatic systems with sediment. Environ. Toxicol. Chem. 12, 1307–1318.spa
dcterms.referencesGallo, M., Lawryk, N., 1991. Organic phosphorus pesticides. In: Hayes, W.J., Laws, E.R. (Eds.), Handbook of Pesticide Toxicology. Academic Press, New York, pp. 5–13.spa
dcterms.referencesGarcía-Medina, S., Galar-Martínez, M., Gomez-Oliv an, L., Torres-Bezaury, R., IslasFlores, H., 2020. The relationship between cyto-genotoxic damage and oxidative stress produced by emerging pollutants on a bioindicator organism (Allium cepa): the carbamazepine case. Chemosphere 253.spa
dcterms.referencesHaq, I., Kumar, S., Raj, A., Lohani, M., Satyanarayana, G., 2017. Genotoxicity assessment of pulp and paper mill effluent before and after bacterial degradation using Allium cepa test. Chemosphere 169, 642–650.spa
dcterms.referencesHeikal, Y.M., S¸ ut¸an, N.A., Rizwan, M., Elsayed, A., 2019. Green synthesized silver nanoparticles induced cytogenotoxic and genotoxic changes in Allium cepa L. varies with nanoparticles doses and duration of exposure. Chemosphere 125430.spa
dcterms.referencesHoubraken, M., Habimana, V., Senaeve, D., Lopez-D avila, E., Spanoghe, P., 2017. Multiresidue determination and ecological risk assessment of pesticides in the lakes of Rwanda. Sci. Total Environ. 576, 888–894.spa
dcterms.referencesKawahara, J., Yoshinaga, J., Yanagisawa, Y., 2007. Dietary exposure to organophosphorus pesticides for young children in Tokyo and neighboring area. Sci. Total Environ. 378 (3), 263–268.spa
dcterms.referencesKhanna, N., Sharma, S., 2013. Allium cepa root chromosomal aberration assay: a review. Indian J. Pharm. Biol. 1 (3), 105–119.spa
dcterms.referencesKock-Schulmeyer, M., Villagrasa, M., L € opez de Alda, M., C espedes-Sanchez, R., Ventura, F., Barcelo, D., 2013. Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Sci. Total Environ. 458–460, 466–476.spa
dcterms.referencesLessa, L., Cariello, F., 2017. Adsorç~ao do paracetamol em carv~ao ativado: regress~ao da citotoxicidade e mutag ^enicidade no sistema Allium cepa. HORUS . 12 (1), 44–54. Livanos, P., Apostolakos, P., Galatis, B., 2012. Plant cell division. Plant Signal. Behav. 7 (7), 771–778.spa
dcterms.referencesMartins, M., Ventura de Souza, V., da Silva, T., 2016. Cytotoxic, genotoxic and mutagenic effects of sewage sludge on Allium Cepa. Chemosphere 148, 481–486.spa
dcterms.referencesMeftaul, I., Venkateswarlu, K., Dharmarajan, R., Annamalai, P., Megharaj, M., 2020. Pesticides in the urban environment: a potential threat that knocks at the door. Sci. Total Environ. 711, 134612.spa
dcterms.referencesMendoza, E., Gonzalez-Ramírez, C., Martínez-Saldana, M., Avelar-Gonz ~ alez, F.J., Valdivia-Flores, A., Aldana-Madrid, M., Rodríguez-Olibarría, G., Jaramillo Juarez, F., 2015. Estudio de exposicion a malati on y cipermetrina y su relaci on con el riesgo de dano renal en habitantes del municipio de Calvillo ~ Aguascalientes. Mexico Revista Mexicana de Ciencias Farmaceuticas 46 (3), 62–72.spa
dcterms.referencesMhamdi, A., Van Breusegem, F., 2018. Reactive oxygen species in plant development. Development 145 (15), dev164376.spa
dcterms.referencesPico, Y., Alvarez-Ruiz, R., Alfarhan, A.H., El-Sheikh, M.A., Alobaid, S.M., Barcel o, D., 2018. Uptake and accumulation of emerging contaminants in soil and plant treated with wastewater under real-world environmental conditions in the Al Hayer area (Saudi Arabia). Sci. Total Environ.spa
dcterms.referencesRadovic, T., Grujic, S., Petkovic, A., Dimkic, M., Lausevic, M., 2015. Determination of pharmaceuticals and pesticides in river sediments and corresponding surface and ground water in the Danube River and tributaries in Serbia. Environ. Monit. Assess. 187, e4092.spa
dcterms.referencesReiler, E., Jørs, E., Bælum, J., Huici, O., Alvarez Caero, M.M., Cedergreen, N., 2015. The influence of tomato processing on residues of organochlorine and organophosphate insecticides and their associated dietary risk. Sci. Total Environ. 527–528, 262–269.spa
dcterms.referencesRelyea, R., Edwards, K., 2010. What doesn't kill you makes you sluggish: how sublethal pesticides alter predator–prey interactions. Copeia 2010, 558–567.spa
dcterms.referencesReynoso, M.S., Alvarez, C., De la Cruz, L., Escoto, M., Sanchez, J., 2015. Evaluation of the genotoxic activity of dicamba and atrazine herbicides in several Mexican and South American varieties of sweetcorn (Zea mays L.). Genet. Mol. Res. 14 (4), 16585–16593.spa
dcterms.referencesRosales, J., 2015. Uso de marcadores genotoxicologicos para la evaluaci on de agricultores expuestos a plaguicidas organofosforados. An. Fac. Med. 76 (3), 247–252.spa
dcterms.referencesRyberg, K.R., Gilliom, R.J., 2015. Trends in pesticide concentrations and use for major rivers of the United States. Sci. Total Environ. 538, 431–444.spa
dcterms.referencesSalazar, S., Botello, E., 2018. Viabilidad de semillas de Glycine max (l.) Utilizando la prueba de tetrazolio. RIAA 9 (2), 89–98.spa
dcterms.referencesSalazar, S., Maldonado, H., 2019. Evaluation of cytotoxic potential of chlorpyrifos using Lens culinaris Med as efficient bioindicator. Ecotoxicol. Environ. Saf. 183, 109528.spa
dcterms.referencesSalazar, S., Maldonado, H., 2020. Evaluation of the cytotoxic potential of sodium hypochlorite using meristematic root cells of Lens culinaris Med. Sci. Total Environ. 701, 134992.spa
dcterms.referencesSalazar, S., Quintero, J., 2020b. Cytotoxic evaluation of glyphosate, using Allium cepa L as bioindicator. Sci. Total Environ. 700.spa
dcterms.referencesSalazar, S., Quintero, J., Rojas, J., 2020a. Cytogenotoxic effect of propanil using the Lens culinaris Med and Allium cepa L test. Chemosphere 249.spa
dcterms.referencesSalazar, S., Quintero, J., Botello, E., 2020b. Optimizacion de la prueba de tetrazolio para evaluar la vialidad en semillas de Solanum lycopersicum L. Ciencia Y Tecnología Agropecuaria. 21 (3).spa
dcterms.referencesSalazar, S., Quintero, J., Bustos, V., 2020c. Implementacion de la prueba de tetrazolio en las semillas de Raphanus sativus L. Revista Facultad De Ciencias Basicas 15 (2), 7–15.spa
dcterms.referencesSalazar-Mercado, S.A., Torres-Leon, C.A., Rojas-Su arez, J.P., 2019. Cytotoxic evaluation of sodium hypochlorite, using Pisum sativum L as effective bioindicator. Ecotoxicol. Environ. Saf. 173, 71–76.spa
dcterms.referencesShahwar, D., Ansari, M., Choudhary, S., 2019. Induction of phenotypic diversity in mutagenized population of lentil (Lens culinaris Medik) by using heavy metal. Heliyon 5, e01722.spa
dcterms.referencesSilveira, G., Lima, M., dos Reis, G., Palmieri, M., Andrade-Vieria, L., 2017. Toxic effects of environmental pollutants: comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere 178, 359–367.spa
dcterms.referencesSingh, D., Roy, B.K., 2017. Evaluation of malathion-induced cytogenetical effects and oxidative stress in plants using Allium test. Acta Physiol. Plant. 39, 92.spa
dcterms.referencesSrivastava, A.K., Singh, D., 2020. Assessment of malathion toxicity on cytophysiological activity, DNA damage and antioxidant enzymes in root of Allium cepa model. Sci. Rep. 10, 886.spa
dcterms.referencesSumon, K.A., Rico, A., Ter Horst, M.M.S., Van den Brink, P.J., Haque, M.M., Rashid, H., 2016. Risk assessment of pesticides used in rice-prawn concurrent systems in Bangladesh. Sci. Total Environ. 568, 498–506.spa
dcterms.referencesTriassi, M., Nardone, A., Giovinetti, M.C., De Rosa, E., Canzanella, S., Sarnacchiaro, P., Montuori, P., 2019. Ecological risk and estimates of organophosphate pesticides loads into the Central Mediterranean Sea from Volturno River, the river of the “Land of Fires” area, southern Italy. Sci. Total Environ. 678, 741–754.spa
dcterms.referencesVerma, S., Srivastava, A., 2018. Morphotoxicity and cytogenotoxicity of pendimethalin in the test plant Allium cepa L. - a biomarker based study. Chemosphere 206, 248–254.spa
dcterms.referencesWanwimolruk, S., Kanchanamayoon, O., Phopin, K., Prachayasittikul, V., 2015. Food safety in Thailand 2: pesticide residues found in Chinese kale (Brassica oleracea), a commonly consumed vegetable in Asian countries. Sci. Total Environ. 532, 447–455.spa
dcterms.referencesWillison, S.A., Daniel Stout, I.I., Mysz, A., Starr, J., Tabor, D., WyrzykowskaCeradini, B., Snyder, E.G., 2019. The impact of wipe sampling variables on method performance associated with indoor pesticide misuse and highly contaminated areas. Sci. Total Environ. 655, 539–546.spa
dcterms.referencesWu, H., Zhang, R., Liu, J., Guo, Y., Ma, E., 2011. Effects of malathion and chlorpyrifos on acetylcholinesterase and antioxidant defense system in Oxya chinensis (Thunberg) (Orthoptera: acrididae). Chemosphere 83 (4), 599–604.spa
dcterms.referencesWu, H., Zhang, Y., Shi, X., Zhang, J., Ma, E., 2017. Overexpression of Mn-superoxide dismutase in Oxya chinensis mediates increased malathion tolerance. Chemosphere 181, 352–359.spa
dc.identifier.doi10.1016/j.heliyon.2020.e04846
dc.publisher.placePaíses Bajosspa
dc.relation.citationeditionVol. 6, No. 9 (2020)spa
dc.relation.citationendpage5spa
dc.relation.citationissue9 (2020)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume6spa
dc.relation.citesS. A. Salazar Mercado y J. D. Quintero Caleño, "Determination of malathion's toxic effect on Lens culinaris Medik cell cycle", Heliyon, vol. 6, n.º 9, septiembre de 2020, art. n.º e04846. Accedido el 23 de octubre de 2021. [En línea]. Disponible: https://doi.org/10.1016/j.heliyon.2020.e04846
dc.relation.ispartofjournalHeliyonspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalEcologyeng
dc.subject.proposalEnvironmental chemistryeng
dc.subject.proposalEnvironmental engineeringeng
dc.subject.proposalEnvironmental toxicologyeng
dc.subject.proposalPlant biologyeng
dc.subject.proposalSystems biologyeng
dc.subject.proposalMitotic indexeng
dc.subject.proposalLentileng
dc.subject.proposalCytotoxiceng
dc.subject.proposalGenotoxiceng
dc.subject.proposalRelative abnormality rateeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem