Mostrar el registro sencillo del ítem
Hydrodynamics Simulation of Different Impeller Geometries Applied to Non-Newtonian Fluids in A Stirred Tank Reactor
dc.contributor.author | Niño, Lilibeth | |
dc.contributor.author | Peñuela, Mariana | |
dc.contributor.author | Gelves, German | |
dc.date.accessioned | 2021-10-21T15:06:58Z | |
dc.date.available | 2021-10-21T15:06:58Z | |
dc.date.issued | 2020-10 | |
dc.identifier.other | 203005-7979-IJMME-IJENS | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/369 | |
dc.description.abstract | In the present study bubble breakup and coalescence phenomena applied to non-newtonian fluids were simulated in order to characterize gas-liquid mass transfer in a 10 L bioreactor equipped with different impeller configurations. The 𝒌𝑳𝒂 mass transfer coefficient was estimated based on hydrodynamics simulation. Four geometries are proposed for analyzing flow pattern effect on gas liquid mass-transfer: Anchor Impeller (Radial Flow Pattern), Helical Impeller (axial upwards pumping), Interference Turbine (axial upwards and downwards pumping) and High Efficiency Turbine (axial downwards pumping). It was found that radial velocity flow patterns maximize 𝒌𝑳𝒂 as a consequence of its great capacity to break bubbles in Non-Newtonian fluids. The latter is confirmed by the highest 𝒌𝑳𝒂 values simulated using the Anchor Impeller. Also, it was found that pumping flow direction influences air dispersion: axial downwards pumping of High Efficiency Turbine generates better results in comparison to axial downwards pumping geometries (Helical Impeller). Motivated by results found on this work, the main criteria to design a device for improving of 𝒌𝑳𝒂 mass transfer in nonNewtonian applications are: (a) generating of radial, axial pumping down and shear velocities; (b) generating of small bubbles, and (c) generating of wall shear stress, lower than critical values reported according to references. | eng |
dc.format.extent | 13 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | International Journal of Mechanical and Mechatronics Engineering | spa |
dc.relation.ispartof | International Journal of Mechanical and Mechatronics Engineering ISSN: 2077-124X, 2020 vol:20 fasc: 5 págs: 106 - 118 | |
dc.rights | 203005-7979-IJMME-IJENS | eng |
dc.source | http://ijens.org/Vol_20_I_05/203005-7979-IJMME-IJENS.pdf | spa |
dc.title | Hydrodynamics Simulation of Different Impeller Geometries Applied to Non-Newtonian Fluids in A Stirred Tank Reactor | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Lehr, F.; Millies, M.; and D. Mewes. (2002). Bubble-Size Distributions and Flow Fields in Bubble Columns. American Intitute of Chemical Engineering, 48( 11), 2426-2446. | spa |
dcterms.references | Karimi, A.; Golbabaei, F.; Reza, M.; Mohammad, M.; and Neghab, M. (2003). Oxygen Mass Transfer in a Sstirred Tank Bioreactor Using Different impeller Configurations for Environmental Purposes. Iranian Journal Enviromental Health Science Engineering, 10, 1-6. | spa |
dcterms.references | Amaral, P.; Freire, M.; Rocha, M.; Marrucho, I.; Coutinho, J.; and Coelho, M. (2008). Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase. Biotechnology Bioengineering, 99, 588–598. | spa |
dcterms.references | Nino, L.; Gelves, G.; Ali, H.; Solsvik, J.; and Jakobsen, H. (2019). Applicability of a Modified Breakage and Coalescence Model Based on the Complete Turbulence Spectrum Concept for CFD Simulation of Gas–Liquid Mass Transfer in a Stirred Tank Reactor. Chemical Engineering Science, 211, 52-72. | spa |
dcterms.references | Alopaeus, A.; Koskinen, J.; and Keskinen, K. (1999) Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. Part 1 Description and qualitative validation of the model. Chemical Engineering Science, 54(24), 5887–5899. | spa |
dcterms.references | Moilanen,; P. (2009). Modelling gas-liquid flow and local mass transfer in stirred tanks modelling gas-liquid flow and local mass transfer in stirred tanks. Journal of Chemical Engineering Data, 53(1), 83-88. | spa |
dcterms.references | Jenne, M.; and Reuss, M.(1999). A critical assessment on the use of k–e turbulence models for simulation of the turbulent liquid flow induced by Rushton turbine in baffled stirred-tank reactors. Chemical Engineering Science, 54(17), 3921-3941 | spa |
dcterms.references | Luo J.; Issa, R.; and Gosman, A. (1994). Prediction of impeller induced flows in mixing vessels using multiple frames of reference. Chemical Engineering Symposium Series, 136, 1-8. | spa |
dcterms.references | Micale, G.; Brucato, A.; Grisafi, F.; and Ciofalo, M. (1999). Prediction of flow fields in a dual‐impeller stirred vessel. American Intitute of Chemical Engineering, 45, 445-464. | spa |
dcterms.references | Tabor, A.; Gosman, G.; and Issa, R. (1996). Numerical simulation ofthe flow in a mixing vessel stirred by a Rushton turbine. Institute of Chemical Engineering, 32, 352-356. | spa |
dcterms.references | Rutherford, K.; Lee, C.; Mahmoudi, S.; and Yianneskis, M. (1996) Hydrodynamic characteristics of dual Rushton impeller stirred vessels. American Intitute of Chemical Engineering, 42, 332-346. | spa |
dcterms.references | Bakker, A.; and Van den Akker, H. (1994). A Computational Model for the Gas-Liquid Flow in Stirred Reactors. Chemical Engineering Research and Design, 72, 1-2. | spa |
dcterms.references | Kerdouss, F.; Bannari, A.; Proulx, P: Bannari, P.; Skrga, M.; and Labrecque, M. (2008). Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model. Computers and Chemical Engineering, 32, 1943–1955. | spa |
dcterms.references | Kerdouss, F.; Kiss, L.; Proulx, P.; Bilodeau, J.; and Dupuis, C. (2005). Mixing characteristics of an axial flow rotor: experimental and numerical study. International Journal of Chemical Reactor Engineering, 3, 1. | spa |
dcterms.references | Lane, G.; Schwarz, M.; and Evans, G. (2002). Predicting gasliquid flow in a mechanically stirred tank. Applied Mathematical Modelling, 26(2), 223–235. | spa |
dcterms.references | Solsvik, J.; and Jakobsen, H. (2016). A review of the statistical turbulence theory required extending the population balance closure models to the entire spectrum of turbulence. American Intitute of Chemical Engineering, 62(5), 1795-1820. | spa |
dcterms.references | Lucas, D. (2010). A literature review on mechanisms and models for the coalescence process of fluid particles. Chemical Engineering Science, 65(10), 2851–2864. | spa |
dcterms.references | Luo H.; and Svendsen, H. (1996). Theoretical Model for Drop and Bubble Breakup in Turbulent Dispersions. American Intitute of Chemical Engineering, 42(5), 1225-1232. | spa |
dcterms.references | Prince, M.; and Blanch, H. (1990). Bubble Coalescence and Break-Up in Air-Sparged Bubble Columns. American Intitute of Chemical Engineering, 36(10), 1485-1499. | spa |
dcterms.references | Lehr, F.; and Mewes, D. (1999). A Transport Equation for the Interfacial Area Density in Two-Phase Flow. American Intitute of Chemical Engineering, 56, 1159–1166. | spa |
dcterms.references | Lehr, F.; and Mewes, D.; (2002). Bubble-Size Distributions and Flow Fields in Bubble Columns. American Intitute of Chemical Engineering, 48(11), 2426-2443. | spa |
dcterms.references | Alopaeus, V.; Koskinen, K. (1999). Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. Part 1 Description and qualitative validation of the model. Chemical Engineering Science, 54(24), 5887–5899. | spa |
dcterms.references | Laakkonen, M. (2006). Development and validation of mass transfer models for the design of agitated gas-liquid reactors. Chemical Engineering Science, 61 (1), 218-228. | spa |
dcterms.references | Moilanen, P. (2009). Modelling gas-liquid flow and local mass transfer in stirred tanks. Industrial & Engineering Chemistry Research, 46(22), 7289-7299. | spa |
dcterms.references | Han, M. (2017). Hydrodynamics and mass transfer in airlift bioreactors : experimental and. numerical simulation analysis. https://lutpub.lut.fi/handle/10024/147646 | spa |
dcterms.references | Chatzi, G.; Gavrielides, A.; and Kiparissides, C. (1989). Generalized Model for Prediction of the Steady-State Drop Size Distributions in Batch Stirred Vessels. Industrial Engineering of Chemical Research, 28 (11), 1704–1711. | spa |
dcterms.references | Alopaeus, V.; Keskinen, K.; Koskinen, I.; and Majander, J. (2003). Gas-liquid and liquid-liquid system modeling using population balances for local mass transfer. Computer Aided Chemical Engineering, 14, 545–549. | spa |
dcterms.references | Robertson, B.; and Ulbrecht, J. (1987). Measurement of shear rate on an agitator in a fermentation broth. Biotechnoly Processing Scale-up Mixing, 1, 72–81. | spa |
dcterms.references | Coulaloglou, C.; and Tavlarides, L. (1977). Description of Interaction Process in Agitated Liquid–Liquid Dispersions. Chemical Engineering Science, 32, 1289-1297. | spa |
dcterms.references | Jakobsen, H.; Lindborg, H. and Dorao, C. (2005). Modeling of bubble column reactors: Progress and limitations. Industrial Engineering of Chemical Research, 44(14), 5107–5151. | spa |
dcterms.references | Sundararaj, U.; and Macosko, C. (1995). Drop Breakup and Coalescence in Polymer Blends: The Effects of Concentration and Compatibilization. Macromolecules, 28(8), 2647–2657. | spa |
dcterms.references | Terasaka, K.; Murata, S.; and Tsutsumino, K. (2010). Bubble Distribution in Shear Flow of Highly Viscous Liquids. Canadian Journal of Chemical Engineering, 81(3), 470–475. | spa |
dcterms.references | Uribe, A.; Rivera, R.; Aguilera, A.; and Murrieta M. (2021). Agitación y Mezclado. Revista Enlace Químico, 4(1), 22–29. | spa |
dcterms.references | Pedrosa,S.; Duarte, C.; and Nunhez, J. (2000). Improving the flow of stirred vessels with anchor type impellers. Computational Aided Chemical Engineering, 8, 403–408. | spa |
dcterms.references | Liguori, R.; Ventorino, V.; Pepe, O.; and Faraco, V. (2016). Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products. Applied Microbioy Biotechnology, 100(2), 597–611. | spa |
dcterms.references | Hou, W.; Zhang, L.; Zhang, J.; and Bao, J. (2016). Rheology evolution and CFD modeling of lignocellulose biomass during extremely high solids content pretreatment. Biochemical Engineering Journal, 105, 412–419. | spa |
dcterms.references | Takahashi, K.; Arai, K.; and Saito, S. (1980). Power Correlation for Anchor and Helical. Journal of Chemical Engineering of Japan, 13, 147–150. | spa |
dcterms.references | Nino, L.; Peñuela, M.; and Gelves, G. (2018). Gas-Liquid Hydrodynamics Simulation using CFD in a Helical Ribbon Impeller Applied for Non-Newtonian Fluids. International Journal of Applied Engineering Research, 13(11), 9353-9359. | spa |
dcterms.references | Chavez, M.; Gonzalez-Ortega, O.; Negrete-Rodriguez, M.; Medina-Torres, L.; and Silva, E. (2007). Hydrodynamics, mass transfer and rheological studies of gibberellic acid production in an airlift bioreactor. World Journal of Microbioy and. Biotechnology, 23(5), 615–623. | spa |
dcterms.references | Gabelle J. (2012). Impact of rheology on the mass transfer coefficient during the growth phase of Trichoderma reesei in stirred bioreactors. Chemical Engineering Science, 75, 408– 417. | spa |
dcterms.references | Xie, M. (2014). Power consumption, local and average volumetric mass transfer coefficient in multiple-impeller stirred bioreactors for xanthan gum solutions. Chemical Engineering Science, 106, 144–156. | spa |
dcterms.references | Gill, N.; Appleton, M.; Baganz, F.; and Lye, G. (2008). Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up. Biotechnology and Bioengineering, 100(6), 1144–1155. | spa |
dcterms.references | Valverde, M.; Bettega, R.; and Badino, A. (2016). Numerical evaluation of mass transfer coefficient in stirred tank reactors with non-Newtonian fluid. Theory Foundation of Chemical Enginering, 50(6), 945–958. | spa |
dcterms.references | Moucha, T.; Linek, V.; and Prokopová, E. (2003). Gas holdup, mixing time and gas-liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and techmix impeller and their combinations. Chemical Enineering Science, 58(9), 1839– 1846. | spa |
dcterms.references | Georgiev, D.; and Vlaev, D. (2012). Bioprocess improvement by design-modified bioreactor flow properties. Biotechnology. Equipment, 26 (4), 3182–3186. | spa |
dcterms.references | Vlaev, D.; Mavros, P.; Seichter, P.; and Mann, R. (2010). Operational Characteristics of a New Energy-saving Impeller for Gas-Liquid Mixing. Canadian Journal of Chemical Engineering, 80(4) 1–7. | spa |
dcterms.references | Ramsay, J.; Simmons, H.; Ingram, A.; and Stitt, E. (2016). Mixing of Newtonian and viscoelastic fluids using ‘butterfly’ impellers. Chemical Enineering Science, 139, 125–141. | spa |
dcterms.references | Gelves, R.; Dietrich, A.; and Takors, R. (2013). Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller. Bioprocess and biosystems engineering, 37, 1-8. | spa |
dcterms.references | Prokop, A.; and Bajpai, R. (1992). The Sensitivity of Biocatalysts to Hydrodynamic Shear Stress. Adances in Applied Microbiology, 37, 165–232. | spa |
dcterms.references | Kelemen, M.; and Sharpe, J. (1979). Controlled cell disruption: a comparison of the forces required to disrupt different micro-organisms. Journal of Cell Science, 35, 431– 441. | spa |
dcterms.references | Sanyal, J.; Marchisio, D.; Fox, R.; and Dhanasekharan, K. (2005). On the comparison between population balance models for CFD simulation of bubble columns. Industrial and Enineering Chemistry Research, 44, 5063–5072. | spa |
dc.publisher.place | Pakistán | spa |
dc.relation.citationedition | Vol. 20, No. 5 (2020) | spa |
dc.relation.citationendpage | 118 | spa |
dc.relation.citationissue | 5 (2020) | spa |
dc.relation.citationstartpage | 106 | spa |
dc.relation.citationvolume | 20 | spa |
dc.relation.cites | "Hydrodynamics Simulation of Different Impeller Geometries Applied to Non-Newtonian Fluids in A Stirred Tank Reactor", International Journal of Mechanical and Mechatronics Engineering, vol. 20, n.º 5, 2020, art. n.º 203005-7979-IJMME-IJENS. [En línea]. Disponible: http://ijens.org/Vol_20_I_05/203005-7979-IJMME-IJENS.pdf | |
dc.relation.ispartofjournal | International Journal of Mechanical and Mechatronics Engineering | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.subject.proposal | Bioreactor | eng |
dc.subject.proposal | Non-Newtonian | eng |
dc.subject.proposal | Fluids | eng |
dc.subject.proposal | Computational Fluid Dynamics | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Ambiente y Vida - GIAV [124]