Mostrar el registro sencillo del ítem

dc.contributor.authorNiño, Lilibeth
dc.contributor.authorPeñuela, Mariana
dc.contributor.authorGelves, German
dc.date.accessioned2021-10-21T15:06:58Z
dc.date.available2021-10-21T15:06:58Z
dc.date.issued2020-10
dc.identifier.other203005-7979-IJMME-IJENS
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/369
dc.description.abstractIn the present study bubble breakup and coalescence phenomena applied to non-newtonian fluids were simulated in order to characterize gas-liquid mass transfer in a 10 L bioreactor equipped with different impeller configurations. The 𝒌𝑳𝒂 mass transfer coefficient was estimated based on hydrodynamics simulation. Four geometries are proposed for analyzing flow pattern effect on gas liquid mass-transfer: Anchor Impeller (Radial Flow Pattern), Helical Impeller (axial upwards pumping), Interference Turbine (axial upwards and downwards pumping) and High Efficiency Turbine (axial downwards pumping). It was found that radial velocity flow patterns maximize 𝒌𝑳𝒂 as a consequence of its great capacity to break bubbles in Non-Newtonian fluids. The latter is confirmed by the highest 𝒌𝑳𝒂 values simulated using the Anchor Impeller. Also, it was found that pumping flow direction influences air dispersion: axial downwards pumping of High Efficiency Turbine generates better results in comparison to axial downwards pumping geometries (Helical Impeller). Motivated by results found on this work, the main criteria to design a device for improving of 𝒌𝑳𝒂 mass transfer in nonNewtonian applications are: (a) generating of radial, axial pumping down and shear velocities; (b) generating of small bubbles, and (c) generating of wall shear stress, lower than critical values reported according to references.eng
dc.format.extent13 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInternational Journal of Mechanical and Mechatronics Engineeringspa
dc.relation.ispartofInternational Journal of Mechanical and Mechatronics Engineering ISSN: 2077-124X, 2020 vol:20 fasc: 5 págs: 106 - 118
dc.rights203005-7979-IJMME-IJENSeng
dc.sourcehttp://ijens.org/Vol_20_I_05/203005-7979-IJMME-IJENS.pdfspa
dc.titleHydrodynamics Simulation of Different Impeller Geometries Applied to Non-Newtonian Fluids in A Stirred Tank Reactoreng
dc.typeArtículo de revistaspa
dcterms.referencesLehr, F.; Millies, M.; and D. Mewes. (2002). Bubble-Size Distributions and Flow Fields in Bubble Columns. American Intitute of Chemical Engineering, 48( 11), 2426-2446.spa
dcterms.referencesKarimi, A.; Golbabaei, F.; Reza, M.; Mohammad, M.; and Neghab, M. (2003). Oxygen Mass Transfer in a Sstirred Tank Bioreactor Using Different impeller Configurations for Environmental Purposes. Iranian Journal Enviromental Health Science Engineering, 10, 1-6.spa
dcterms.referencesAmaral, P.; Freire, M.; Rocha, M.; Marrucho, I.; Coutinho, J.; and Coelho, M. (2008). Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase. Biotechnology Bioengineering, 99, 588–598.spa
dcterms.referencesNino, L.; Gelves, G.; Ali, H.; Solsvik, J.; and Jakobsen, H. (2019). Applicability of a Modified Breakage and Coalescence Model Based on the Complete Turbulence Spectrum Concept for CFD Simulation of Gas–Liquid Mass Transfer in a Stirred Tank Reactor. Chemical Engineering Science, 211, 52-72.spa
dcterms.referencesAlopaeus, A.; Koskinen, J.; and Keskinen, K. (1999) Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. Part 1 Description and qualitative validation of the model. Chemical Engineering Science, 54(24), 5887–5899.spa
dcterms.referencesMoilanen,; P. (2009). Modelling gas-liquid flow and local mass transfer in stirred tanks modelling gas-liquid flow and local mass transfer in stirred tanks. Journal of Chemical Engineering Data, 53(1), 83-88.spa
dcterms.referencesJenne, M.; and Reuss, M.(1999). A critical assessment on the use of k–e turbulence models for simulation of the turbulent liquid flow induced by Rushton turbine in baffled stirred-tank reactors. Chemical Engineering Science, 54(17), 3921-3941spa
dcterms.referencesLuo J.; Issa, R.; and Gosman, A. (1994). Prediction of impeller induced flows in mixing vessels using multiple frames of reference. Chemical Engineering Symposium Series, 136, 1-8.spa
dcterms.referencesMicale, G.; Brucato, A.; Grisafi, F.; and Ciofalo, M. (1999). Prediction of flow fields in a dual‐impeller stirred vessel. American Intitute of Chemical Engineering, 45, 445-464.spa
dcterms.referencesTabor, A.; Gosman, G.; and Issa, R. (1996). Numerical simulation ofthe flow in a mixing vessel stirred by a Rushton turbine. Institute of Chemical Engineering, 32, 352-356.spa
dcterms.referencesRutherford, K.; Lee, C.; Mahmoudi, S.; and Yianneskis, M. (1996) Hydrodynamic characteristics of dual Rushton impeller stirred vessels. American Intitute of Chemical Engineering, 42, 332-346.spa
dcterms.referencesBakker, A.; and Van den Akker, H. (1994). A Computational Model for the Gas-Liquid Flow in Stirred Reactors. Chemical Engineering Research and Design, 72, 1-2.spa
dcterms.referencesKerdouss, F.; Bannari, A.; Proulx, P: Bannari, P.; Skrga, M.; and Labrecque, M. (2008). Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model. Computers and Chemical Engineering, 32, 1943–1955.spa
dcterms.referencesKerdouss, F.; Kiss, L.; Proulx, P.; Bilodeau, J.; and Dupuis, C. (2005). Mixing characteristics of an axial flow rotor: experimental and numerical study. International Journal of Chemical Reactor Engineering, 3, 1.spa
dcterms.referencesLane, G.; Schwarz, M.; and Evans, G. (2002). Predicting gasliquid flow in a mechanically stirred tank. Applied Mathematical Modelling, 26(2), 223–235.spa
dcterms.referencesSolsvik, J.; and Jakobsen, H. (2016). A review of the statistical turbulence theory required extending the population balance closure models to the entire spectrum of turbulence. American Intitute of Chemical Engineering, 62(5), 1795-1820.spa
dcterms.referencesLucas, D. (2010). A literature review on mechanisms and models for the coalescence process of fluid particles. Chemical Engineering Science, 65(10), 2851–2864.spa
dcterms.referencesLuo H.; and Svendsen, H. (1996). Theoretical Model for Drop and Bubble Breakup in Turbulent Dispersions. American Intitute of Chemical Engineering, 42(5), 1225-1232.spa
dcterms.referencesPrince, M.; and Blanch, H. (1990). Bubble Coalescence and Break-Up in Air-Sparged Bubble Columns. American Intitute of Chemical Engineering, 36(10), 1485-1499.spa
dcterms.referencesLehr, F.; and Mewes, D. (1999). A Transport Equation for the Interfacial Area Density in Two-Phase Flow. American Intitute of Chemical Engineering, 56, 1159–1166.spa
dcterms.referencesLehr, F.; and Mewes, D.; (2002). Bubble-Size Distributions and Flow Fields in Bubble Columns. American Intitute of Chemical Engineering, 48(11), 2426-2443.spa
dcterms.referencesAlopaeus, V.; Koskinen, K. (1999). Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. Part 1 Description and qualitative validation of the model. Chemical Engineering Science, 54(24), 5887–5899.spa
dcterms.referencesLaakkonen, M. (2006). Development and validation of mass transfer models for the design of agitated gas-liquid reactors. Chemical Engineering Science, 61 (1), 218-228.spa
dcterms.referencesMoilanen, P. (2009). Modelling gas-liquid flow and local mass transfer in stirred tanks. Industrial & Engineering Chemistry Research, 46(22), 7289-7299.spa
dcterms.referencesHan, M. (2017). Hydrodynamics and mass transfer in airlift bioreactors : experimental and. numerical simulation analysis. https://lutpub.lut.fi/handle/10024/147646spa
dcterms.referencesChatzi, G.; Gavrielides, A.; and Kiparissides, C. (1989). Generalized Model for Prediction of the Steady-State Drop Size Distributions in Batch Stirred Vessels. Industrial Engineering of Chemical Research, 28 (11), 1704–1711.spa
dcterms.referencesAlopaeus, V.; Keskinen, K.; Koskinen, I.; and Majander, J. (2003). Gas-liquid and liquid-liquid system modeling using population balances for local mass transfer. Computer Aided Chemical Engineering, 14, 545–549.spa
dcterms.referencesRobertson, B.; and Ulbrecht, J. (1987). Measurement of shear rate on an agitator in a fermentation broth. Biotechnoly Processing Scale-up Mixing, 1, 72–81.spa
dcterms.referencesCoulaloglou, C.; and Tavlarides, L. (1977). Description of Interaction Process in Agitated Liquid–Liquid Dispersions. Chemical Engineering Science, 32, 1289-1297.spa
dcterms.referencesJakobsen, H.; Lindborg, H. and Dorao, C. (2005). Modeling of bubble column reactors: Progress and limitations. Industrial Engineering of Chemical Research, 44(14), 5107–5151.spa
dcterms.referencesSundararaj, U.; and Macosko, C. (1995). Drop Breakup and Coalescence in Polymer Blends: The Effects of Concentration and Compatibilization. Macromolecules, 28(8), 2647–2657.spa
dcterms.referencesTerasaka, K.; Murata, S.; and Tsutsumino, K. (2010). Bubble Distribution in Shear Flow of Highly Viscous Liquids. Canadian Journal of Chemical Engineering, 81(3), 470–475.spa
dcterms.referencesUribe, A.; Rivera, R.; Aguilera, A.; and Murrieta M. (2021). Agitación y Mezclado. Revista Enlace Químico, 4(1), 22–29.spa
dcterms.referencesPedrosa,S.; Duarte, C.; and Nunhez, J. (2000). Improving the flow of stirred vessels with anchor type impellers. Computational Aided Chemical Engineering, 8, 403–408.spa
dcterms.referencesLiguori, R.; Ventorino, V.; Pepe, O.; and Faraco, V. (2016). Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products. Applied Microbioy Biotechnology, 100(2), 597–611.spa
dcterms.referencesHou, W.; Zhang, L.; Zhang, J.; and Bao, J. (2016). Rheology evolution and CFD modeling of lignocellulose biomass during extremely high solids content pretreatment. Biochemical Engineering Journal, 105, 412–419.spa
dcterms.referencesTakahashi, K.; Arai, K.; and Saito, S. (1980). Power Correlation for Anchor and Helical. Journal of Chemical Engineering of Japan, 13, 147–150.spa
dcterms.referencesNino, L.; Peñuela, M.; and Gelves, G. (2018). Gas-Liquid Hydrodynamics Simulation using CFD in a Helical Ribbon Impeller Applied for Non-Newtonian Fluids. International Journal of Applied Engineering Research, 13(11), 9353-9359.spa
dcterms.referencesChavez, M.; Gonzalez-Ortega, O.; Negrete-Rodriguez, M.; Medina-Torres, L.; and Silva, E. (2007). Hydrodynamics, mass transfer and rheological studies of gibberellic acid production in an airlift bioreactor. World Journal of Microbioy and. Biotechnology, 23(5), 615–623.spa
dcterms.referencesGabelle J. (2012). Impact of rheology on the mass transfer coefficient during the growth phase of Trichoderma reesei in stirred bioreactors. Chemical Engineering Science, 75, 408– 417.spa
dcterms.referencesXie, M. (2014). Power consumption, local and average volumetric mass transfer coefficient in multiple-impeller stirred bioreactors for xanthan gum solutions. Chemical Engineering Science, 106, 144–156.spa
dcterms.referencesGill, N.; Appleton, M.; Baganz, F.; and Lye, G. (2008). Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up. Biotechnology and Bioengineering, 100(6), 1144–1155.spa
dcterms.referencesValverde, M.; Bettega, R.; and Badino, A. (2016). Numerical evaluation of mass transfer coefficient in stirred tank reactors with non-Newtonian fluid. Theory Foundation of Chemical Enginering, 50(6), 945–958.spa
dcterms.referencesMoucha, T.; Linek, V.; and Prokopová, E. (2003). Gas holdup, mixing time and gas-liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and techmix impeller and their combinations. Chemical Enineering Science, 58(9), 1839– 1846.spa
dcterms.referencesGeorgiev, D.; and Vlaev, D. (2012). Bioprocess improvement by design-modified bioreactor flow properties. Biotechnology. Equipment, 26 (4), 3182–3186.spa
dcterms.referencesVlaev, D.; Mavros, P.; Seichter, P.; and Mann, R. (2010). Operational Characteristics of a New Energy-saving Impeller for Gas-Liquid Mixing. Canadian Journal of Chemical Engineering, 80(4) 1–7.spa
dcterms.referencesRamsay, J.; Simmons, H.; Ingram, A.; and Stitt, E. (2016). Mixing of Newtonian and viscoelastic fluids using ‘butterfly’ impellers. Chemical Enineering Science, 139, 125–141.spa
dcterms.referencesGelves, R.; Dietrich, A.; and Takors, R. (2013). Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller. Bioprocess and biosystems engineering, 37, 1-8.spa
dcterms.referencesProkop, A.; and Bajpai, R. (1992). The Sensitivity of Biocatalysts to Hydrodynamic Shear Stress. Adances in Applied Microbiology, 37, 165–232.spa
dcterms.referencesKelemen, M.; and Sharpe, J. (1979). Controlled cell disruption: a comparison of the forces required to disrupt different micro-organisms. Journal of Cell Science, 35, 431– 441.spa
dcterms.referencesSanyal, J.; Marchisio, D.; Fox, R.; and Dhanasekharan, K. (2005). On the comparison between population balance models for CFD simulation of bubble columns. Industrial and Enineering Chemistry Research, 44, 5063–5072.spa
dc.publisher.placePakistánspa
dc.relation.citationeditionVol. 20, No. 5 (2020)spa
dc.relation.citationendpage118spa
dc.relation.citationissue5 (2020)spa
dc.relation.citationstartpage106spa
dc.relation.citationvolume20spa
dc.relation.cites"Hydrodynamics Simulation of Different Impeller Geometries Applied to Non-Newtonian Fluids in A Stirred Tank Reactor", International Journal of Mechanical and Mechatronics Engineering, vol. 20, n.º 5, 2020, art. n.º 203005-7979-IJMME-IJENS. [En línea]. Disponible: http://ijens.org/Vol_20_I_05/203005-7979-IJMME-IJENS.pdf
dc.relation.ispartofjournalInternational Journal of Mechanical and Mechatronics Engineeringspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalBioreactoreng
dc.subject.proposalNon-Newtonianeng
dc.subject.proposalFluidseng
dc.subject.proposalComputational Fluid Dynamicseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem