Mostrar el registro sencillo del ítem


Estimación del indice de flujo de CO2 en la isla de San Andrés mediante lógica difusa

dc.contributor.authorPopayán-Hernández, Juan Guillermo
dc.contributor.authorBecerra Moreno, Dorance
dc.contributor.authorZuñiga Escobar, Orlando
dc.date.accessioned2021-10-15T17:31:34Z
dc.date.available2021-10-15T17:31:34Z
dc.date.issued2021-07-04
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/320
dc.description.abstractWhen applying fuzzy inference systems through the software to Spatial data processing for decision making (GeoFis) to a coral complex database of the island of San Andres, a CO2 flux index was estimated that allows us to know the effect of the flux on the sea and the influence of the variables involved. It was found that six of the studied areas had a state of acidification of the sea due to CO2, while all other areas had a slight incorporation of the gas. Likewise, it was evident that variables that have a significant influence on the incorporation of CO2 into the marine environment are the sea surface temperature and the chemical nature of this gas, according to the component analysis. Therefore, the fuzzy methods for the determination of acidification of coral ecosystems, allows establishing an approachment effects from the gradual incorporation of CO2 that would have into the marine environment, in addition to providing excellent advantages in terms of its determination based on satellite information.eng
dc.description.abstractAl aplicar sistemas de inferencia difusos a través de la herramienta GeoFIS en una base de datos del complejo coralino de la isla de San Andrés se estimó un índice de flujo de CO2 que permite conocer el efecto del flujo sobre mar y la influencia de las variables involucradas. Se encontró que seis de las zonas estudiadas tenían un estado de acidificación del mar por cuenta del CO2, mientras todas las demás zonas tenían una leve incorporación del gas. Así mismo, se pudo evidenciar que las variables que poseen influencia significativa sobre la incorporación de CO2 al medio marino son la temperatura superficial del mar y la naturaleza química de este gas, según el analisis de componentes. Por lo cual, los métodos difusos para la determinación de acidificación de los ecosistemas coralinos, permite establecer una aproximación a los efectos que tendría la incorporación paulatina de CO2 al medio marino, además de brindar excelentes ventajas en cuanto a su determinación a partir de información satelital.spa
dc.format.extent11 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherIngeniería Y Competitividadspa
dc.relation.ispartofRevista Ingeniería Y Competitividad ISSN: 2027-8284, 2021 vol:23 fasc: 2 págs: 1 - 11, DOI:10.25100/iyc.23i2.9700
dc.rightsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/9700spa
dc.titleEstimation of the CO2flux index in the San Andrés Island using fuzzy logiceng
dc.titleEstimación del indice de flujo de CO2 en la isla de San Andrés mediante lógica difusaspa
dc.typeArtículo de revistaspa
dcterms.referencesClaesson J, Nycander J. Combined effect of global warming and increased CO2 - concentration on vegetation growth in water-limited conditions. Ecological Modelling. 2013;256:23–30. https://doi.org/10.1016/j.ecolmodel.2013.0 2.007.spa
dcterms.referencesLefevre S. Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO2 and their interaction. Conservation Physiology. 2016;4:cow009.https://doi.org/10.1093/co nphys/cow009.spa
dcterms.referencesKoçak E, Ulucak R, Ulucak ZŞ. The impact of tourism developments on CO2 emissions: An advanced panel data estimation. Tourism Management Perspectives. 2020;33(April 2019):100611. https://doi.org/10.1016/j.tmp.2019.100611spa
dcterms.referencesIntergovernmental Panel on Climate Change. Carbon and Other Biogeochemical Cycles. In: Cambridge University Press, editor. Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2014. p. 465–570. https://doi.org/10.1017/CBO97811074153 24.015.spa
dcterms.referencesMacDougall AH, Friedlingstein P. The Origin and Limits of the Near Proportionality between Climate Warming and Cumulative CO2 Emissions. Journal of Climate.2015;28(10):4217–4230. https://doi.org/10.1175/jcli-d-14-00036.1.spa
dcterms.referencesRau GH, McLeod EL, Hoegh-Guldberg O. The need for new ocean conservation strategies in a high-carbon dioxide world. Nature Climate Change. 2012;2(10):720– 724. https://doi.org/10.1038/nclimate1555spa
dcterms.referencesSzulejko JE, Kumar P, Deep A, Kim KH. Global warming projections to 2100 using simple CO2 greenhouse gas modeling and comments on CO2 climate sensitivity factor. Atmospheric Pollution Research. 2017;8(1):136–140. https://doi.org/10.1016/j.apr.2016.08.002.spa
dcterms.referencesWong CS, Christian JR, Wong E, Page J, Xie L, et. al. Carbon dioxide in surface seawater of the eastern North Pacific Ocean (Line P), 1973-2005. Deep-Sea Research Part I: Oceanographic Research Papers. 2010;57(5):687–695. https://doi.org/10.1016/j.dsr.2010.02.003.spa
dcterms.referencesTambutté E, Venn AA, Holcomb M., Segonds N, Techer N. et. al. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification. Nature Communications. 2015;6:7368. https://doi.org/10.1038/ncomms8368.spa
dcterms.referencesAlbright R, Takeshita Y, Koweek DA, Ninokawa A, Wolfe K. et al. Carbon dioxide addition to coral reef waters suppresses net community calcification. Nature. 2018;555(7697):516–519. https://doi.org/10.1038/nature25968.spa
dcterms.referencesTaylor E, Baine M, Killmer A, Howard M. Seafluxer marine protected area: Governance for sustainable development. Marine Policy. 2013;41:57–64. https://doi.org/10.1016/j.marpol.2012.12.0 23.spa
dcterms.referencesGavio B, Palmer-Cantillo S, Mancera JE. Historical analysis (2000-2005) of the coastal water quality in San Andrés Island, SeaFluxer Biosphere Reserve, Caribbean Colombia. Marine Pollution Bulletin. 2010;60(7):1018–1030. https://doi.org/10.1016/j.marpolbul.2010.0 1.025.spa
dcterms.referencesAlbis-Salas MR, Gavio B. Notes on marine algae in the International Biosphere Reserve Seaflower, Caribbean Colombian I: new records of macroalgal epiphytes on the seagrass Thalassia testudinum. Botanica Marina. 2011;54(6): 537–543. https://doi.org/10.1515/BOT.2011.069.spa
dcterms.referencesCastaño-Isaza J, Newball R, Roach B, Lau WWY. Valuing beaches to develop payment for ecosystem services schemes in Colombia’s Seafluxer marine protected area. Ecosystem Services. 2015;11:22–31. https://doi.org/10.1016/j.ecoser.2014.10.0 03.spa
dcterms.referencesGuillaume S, Charnomordic B. Learning interpretable fuzzy inference systems with FisPro. Information Sciences. 2011;181(20):4409–4427. https://doi.org/10.1016/j.ins.2011.03.025.spa
dcterms.referencesDong F, Zhu X, Qian W, Wang P, Wang J. Combined effects of CO2-driven ocean acidification and Cd stress in the marine environment: Enhanced tolerance of Phaeodactylum tricornutum to Cd exposure. Marine Pollution Bulletin. 2020;150(November 2019): 110594. https://doi.org/10.1016/j.marpolbul.2019.1 10594.spa
dcterms.referencesOrselli IBM, Goyet C, Kerr R, de Azevedo JLL, Araujo M. et al. The effect of Agulhas eddies on absorption and transport of anthropogenic carbon in the South Atlantic Ocean. Climate. 2019;7(6): 84. https://doi.org/10.3390/CLI7060084.spa
dcterms.referencesPadin XA, Castro CG, Ríos AF, Pérez FF. Oceanic CO2 uptake and biogeochemical variability during the formation of the Eastern North Atlantic Central water under two contrasting NAO scenarios. Journal of Marine Systems. 2011;84(3–4), 96–105. https://doi.org/10.1016/j.jmarsys.2010.10. 002.spa
dcterms.referencesD’Ortenzio F, Antoine D, Marullo S. Satellite-driven modeling of the upper ocean mixed layer and air-sea CO2 flux in the Mediterranean Sea. Deep-Sea Research Part I: Oceanographic Research Papers. 2008;55(4):405–434. https://doi.org/10.1016/j.dsr.2007.12.008.spa
dcterms.referencesElse BGT, Yackel JJ, Papakyriakou TN. Application of satellite remote sensing techniques for estimating air-sea CO2 fluxes in Hudson Bay, Canada during the ice-free season. Remote Sensing of Environment. 2008;112(9):3550–3562. https://doi.org/10.1016/j.rse.2008.04.013.spa
dcterms.referencesHattam C, Atkins JP, Beaumont N, Börger T, Böhnke-Henrichs A. et al. Marine ecosystem services: Linking indicators to their classification. Ecological Indicators, 49:61–75. https://doi.org/10.1016/j.ecolind.2014.09.0 26.spa
dcterms.referencesTakahashi T, Sutherland SC, Chipman DW, Goddard JG, Ho C. et al. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Marine Chemistry. 2014;164:95–125. https://doi.org/10.1016/j.marchem.2014.0 6.004.spa
dcterms.referencesSoloviev A, Donelan M, Graber H, Haus B, Schlüssel P. An approach to estimation of near-surface turbulence and CO2 transfer velocity from remote sensing data. Journal of Marine Systems. 2007;66(1–4): 182– 194. https://doi.org/10.1016/j.jmarsys.2006.03. 023.spa
dcterms.referencesWoods S, Minnett PJ, Gentemann CL, Bogucki D. Influence of the oceanic cool skin layer on global air-sea CO2 flux estimates. Remote Sensing of Environment. 2014;145:15–24. https://doi.org/10.1016/j.rse.2013.11.023.spa
dcterms.referencesYasunaka S, Murata A, Watanabe E, Chierici M, Fransson A. et al. Mapping of the air–sea CO2 flux in the Arctic Ocean and its adjacent seas: Basin-wide distribution and seasonal to interannual variability. Polar Science;201610(3):323– 334.https://doi.org/10.1016/j.polar.2016.0 3.006.spa
dcterms.referencesChien H, Zhong YZ, Yang KH, Cheng HY. Diurnal variability of CO2 flux at coastal zone of Taiwan based on eddy covariance observation. Continental Shelf Research. 2018;162(April):27–38. https://doi.org/10.1016/j.csr.2018.04.006spa
dcterms.referencesWanninkhof R, Barbero L, Byrne R, Cai WJ, Huang WJ. et al. Ocean acidification along the Gulf Coast and East Coast of the USA. Continental Shelf Research. 2015;98:54–71. https://doi.org/10.1016/j.csr.2015.02.008.spa
dc.identifier.doi10.25100/iyc.v23i2.9700
dc.publisher.placeCali, Colombiaspa
dc.relation.citationeditionVol. 23, No. 2 (2021)spa
dc.relation.citationendpage11spa
dc.relation.citationissue2 (2021)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume23spa
dc.relation.citesJ. G. Popayan Hernandez, D. Becerra Moreno, y O. Zuñiga Escobar, «Estimación del índice de flujo de CO2 en la isla de San Andrés utilizando lógica difusa», inycomp, vol. 23, n.º 2, p. e2039700, jul. 2021.
dc.relation.ispartofjournalIngeniería Y Competitividadspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalAcidificationeng
dc.subject.proposalCO2 fluxeng
dc.subject.proposalFuzzy logiceng
dc.subject.proposalGeoFISeng
dc.subject.proposalAcidificaciónspa
dc.subject.proposalFlujo de CO2spa
dc.subject.proposalGeoFISspa
dc.subject.proposalLógica difusaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Excepto si se señala otra cosa, la licencia del ítem se describe como Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.