Show simple item record

dc.contributor.authorUrbina-Suarez, Nestor Andres
dc.contributor.authorMachuca-Martinez, Fiderman
dc.contributor.authorBarajas Solano, andres F
dc.date.accessioned2021-10-13T17:26:02Z
dc.date.available2021-10-13T17:26:02Z
dc.date.issued2021-05-27
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/301
dc.description.abstractThe tannery industry is one of the economic sectors that contributes to the development of different countries. Globally, Europe and Asia are the main producers of this industry, although Latin America and Africa have been growing considerably in recent years. With this growth, the negative environmental impacts towards different ecosystem resources as a result of the discharges of recalcitrated pollutants, have led to different investigations to generate alternative solutions. Worldwide, different technologies have been studied to address this problem, biological and physicochemical processes have been widely studied, presenting drawbacks with some recalcitrant compounds. This review provides a context on the different existing technologies for the treatment of tannery wastewater, analyzing the physicochemical composition of this liquid waste, the impact it generates on human health and ecosystems and the advances in the different existing technologies, focusing on advanced oxidation processes and the use of microalgae. The coupling of advanced oxidation processes with biological processes, mainly microalgae, is seen as a viable biotechnological strategy, not only for the removal of pollutants, but also to obtain value-added products with potential use in the biorefining of the biomass.eng
dc.format.extent25 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherMolecules
dc.relation.ispartofMolecules ISSN: 1420-3049, 2021 vol:26 fasc: 3222 págs: 1 - 25, DOI:10.3390/molecules26113222
dc.rights2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/1420-3049/26/11/3222spa
dc.titleAdvanced Oxidation Processes and Biotechnological Alternatives for the Treatment of Tannery Wastewatereng
dc.typeArtículo de revistaspa
dcterms.referencesGallego-Molina, A.; Mendoza-Roca, J.A.; Aguado, D.; Galiana-Aleixandre, M.V. Reducing Pollution from the Deliming–Bating Operation in a Tannery. Wastewater Reuse by Microfiltration Membranes. Chem. Eng. Res. Des. 2013, 91, 369–376. [CrossRef]spa
dcterms.referencesNagi, M.; He, M.; Li, D.; Gebreluel, T.; Cheng, B.; Wang, C. Utilization of Tannery Wastewater for Biofuel Production: New Insights on Microalgae Growth and Biomass Production. Sci. Rep. 2020, 10, 1530. [CrossRef] [PubMed]spa
dcterms.referencesFAOSTAT. Crops and Livestock Products. Available online: http://www.fao.org/faostat/en/#data/TP (accessed on 22 March 2021).spa
dcterms.referencesThe Confederation of National Associations of Tanners and Dressers of the European Community (COTANCE). Available online: https://euroleather.com (accessed on 22 March 2021).spa
dcterms.referencesMartinez, B.S.Y.; Romero, C.J.A. Revisión Del Estado Actual De La Industria De Las Curtiembres En Sus Procesos Y Productos: Un análisis De Su Competitividad. Rev. Fac. Cien. Econ. 2017, 26, 113–124.spa
dcterms.referencesLofrano, G.; Belgiorno, V.; Gallo, M.; Raimo, A.; Meriç, S. Toxicity reduction in leather tanning wastewater by improved coagulation flocculation process. Glob. NEST J. 2006, 8, 151–158. [CrossRef]spa
dcterms.referencesPena, A.C.; Trierweiler, L.F.; Gutterres, M. Influence of photoperiod on biomass production and removal of nutrients from tannery effluents with microalgae consortium. In Proceedings of the XXXV IULTCS Congress 2019; Tegtmeyer, D., Meyer, M., Eds.; Association for Tannery Chemistry and Technology: Dresden, Germany, 2019; Volume 4, p. 19.spa
dcterms.referencesOuaissa, Y.A.; Chabani, M.; Amrane, A.; Bensmaili, A. Integration of Electro Coagulation and Adsorption for the Treatment of Tannery Wastewater–The Case of an Algerian Factory, Rouiba. Procedia Eng. 2012, 33, 98–101. [CrossRef]spa
dcterms.referencesHansen, É.; Monteiro de Aquim, P.; Hansen, A.W.; Cardoso, J.K.; Ziulkoski, A.L.; Gutterres, M. Impact of Post-Tanning Chemicals on the Pollution Load of Tannery Wastewater. J. Environ. Manag. 2020, 269, 110787. [CrossRef]spa
dcterms.referencesAravindhan, R.; Madhan, B.; Rao, J.R.; Nair, B.U.; Ramasami, T. Bioaccumulation of Chromium from Tannery Wastewater: An Approach for Chrome Recovery and Reuse. Environ. Sci. Technol. 2004, 38, 300–306. [CrossRef]spa
dcterms.referencesChhikara, S.; Hooda, A.; Rana, L.; Dhankhar, R. Chromium (VI) Biosorption by Immobilized Aspergillus niger in Continuous Flow System with Special Reference to FTIR Analysis. J. Environ. Biol. 2010, 31, 561–566. Available online: http://jeb.co.in/journal_ issues/201009_sep10/paper_03.pdf (accessed on 22 March 2020). [PubMed]spa
dcterms.referencesDaneshvar, E.; Zarrinmehr, M.J.; Kousha, M.; Hashtjin, A.M.; Saratale, G.D.; Maiti, A.; Vithanage, M.; Bhatnagar, A. Hexavalent Chromium Removal from Water by Microalgal-Based Materials: Adsorption, Desorption and Recovery Studies. Bioresour. Technol. 2019, 293, 122064. [CrossRef]spa
dcterms.referencesda Fontoura, J.T.; Rolim, G.S.; Farenzena, M.; Gutterres, M. Influence of Light Intensity and Tannery Wastewater Concentration on Biomass Production and Nutrient Removal by Microalgae Scenedesmus sp. Process Safe Environ. Prot. 2017, 111, 355–362. [CrossRef]spa
dcterms.referencesMohd Udaiyappan, A.F.; Abu Hasan, H.; Takriff, M.S.; Sheikh Abdullah, S.R. A Review of the Potentials, Challenges and Current Status of Microalgae Biomass Applications in Industrial Wastewater Treatment. J. Water Process Eng. 2017, 20, 8–21. [CrossRef]spa
dcterms.referencesCrini, G.; Lichtfouse, E. Advantages and Disadvantages of Techniques Used for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 145–155. [CrossRef]spa
dcterms.referencesPena, A.d.C.C.; Bertoldi, C.F.; da Fontoura, J.T.; Trierweiler, L.F.; Gutterres, M. Consortium of Microalgae for Tannery Effluent Treatment. Braz. Arch. Biol. Technol. 2019, 62. [CrossRef]spa
dcterms.referencesQuintero-Dallos, V.; García-Martínez, J.B.; Contreras-Ropero, J.E.; Barajas-Solano, A.F.; Barajas-Ferrerira, C.; Lavecchia, R.; Zuorro, A. Vinasse as a Sustainable Medium for the Production of Chlorella vulgaris UTEX 1803. Water 2019, 11, 1526. [CrossRef]spa
dcterms.referencesGuiza-Franco, L.; Orozco-Rojas, L.G.; Sánchez-Galvis, E.M.; García-Martínez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F. Production of Chlorella vulgaris Biomass on Uv-Treated Wastewater as an Alternative for Environmental Sustainability on High-Mountain Fisheries. Chem. Eng. Trans. 2018, 64, 517–522. [CrossRef]spa
dcterms.referencesGarcia-Martinez, J.B.; Urbina-Suarez, N.A.; Zuorro, A.; Barajas-Solano, A.F.; Kafarov, V. Fisheries Wastewater as a Sustainable Media for the Production of Algae-Based Products. Chem. Eng. Trans. 2019, 76, 1339–1344. [CrossRef]spa
dcterms.referencesEstévez-Landazábal, L.L.; Barajas-Solano, A.F.; Barajas-Ferreira, C.; Kafarov, V. Improvement of lipid productivity on Chlorella vulgaris using waste glycerol and sodium acetate. CTF Cienc. Tecnol. Futuro 2013, 5, 113–126. Available online: http://www.scielo. org.co/scielo.php?script=sci_arttext&pid=S0122-53832013000100009 (accessed on 22 March 2021).spa
dcterms.referencesYen, H.-W.; Chen, P.-W.; Hsu, C.-Y.; Lee, L. The Use of Autotrophic Chlorella vulgaris in Chromium (VI) Reduction under Different Reduction Conditions. J. Taiwan Inst. Chem. Eng. 2017, 74, 1–6. [CrossRef]spa
dcterms.referencesGarcia-Martinez, B.; Ayala-Torres, E.; Reyes-Gomez, O.; Zuorro, A.; Barajas-Solano, A.; Barajas-Ferreira, C. Evaluation of a Two-Phase Extraction System of Carbohydrates and Proteins from Chlorella vulgaris Utex 1803. Chem. Eng. Trans. 2016, 49, 355–360. [CrossRef]spa
dcterms.referencesBarajas-Solano, A.F.; Guzmán-Monsalve, A.; Kafarov, V. Effect of Carbon-Nitrogen Ratio for the Biomass Production, Hydrocarbons and Lipids on Botryoccus braunii UIS 003. Chem. Eng. Trans. 2016, 49, 247–252. [CrossRef]spa
dcterms.referencesCuéllar-García, D.J.; Rangel-Basto, Y.A.; Urbina-Suarez, N.A.; Barajas-Solano, A.F.; Muñoz-Peñaloza, Y.A. Lipids production from Scenedesmus obliquus through carbon/nitrogen ratio optimization. J. Phys. Conf. Ser. 2019, 1388, 012043. [CrossRef]spa
dcterms.references. Cuéllar-García, D.J.; Rangel-Basto, Y.A.; Barajas-Solano, A.F.; Muñoz-Peñaloza, Y.A.; Urbina-Suarez, N.A. Towards the production of microalgae biofuels: The effect of the culture medium on lipid deposition. BioTechnologia 2019, 100, 273–278. [CrossRef]spa
dcterms.referencesZuorro, A.; Leal-Jerez, A.G.; Morales-Rivas, L.K.; Mogollón-Londoño, S.O.; Sanchez-Galvis, E.M.; García-Martínez, J.B.; BarajasSolano, A.F. Enhancement of Phycobiliprotein Accumulation in Thermotolerant Oscillatoria sp. through Media Optimization. ACS Omega 2021, 6, 10527–10536. [CrossRef]spa
dcterms.referencesRangel-Basto, Y.A.; García-Ochoa, I.E.; Suarez-Gelvez, J.H.; Zuorro, A.; Barajas-Solano, A.F.; Urbina-Suarez, N.A. The Effect of Temperature and Enzyme Concentration in the Transesterification Process of Synthetic Microalgae Oil. Chem. Eng. Trans. 2018, 64, 331–336. [CrossRef]spa
dcterms.referencesBarajas-Solano, A.F.; Gonzalez-Delgado, A.D.; Kafarov, V. Effect of Thermal Pre-Treatment on Fermentable Sugar Production of Chlorella vulgaris. Chem. Eng. Trans. 2014, 37, 655–660. [CrossRef]spa
dcterms.referencesZuorro, A.; García-Martínez, J.B.; Barajas-Solano, A.F. The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review. Catalysts 2021, 11, 22. [CrossRef]spa
dcterms.referencesAjayan, K.V.; Selvaraju, M.; Unnikannan, P.; Sruthi, P. Phycoremediation of Tannery Wastewater Using Microalgae Scenedesmus Species. Int. J. Phytoremed. 2015, 17, 907–916. [CrossRef]spa
dcterms.referencesSuárez Escobar, A.F.; García Ubaque, C.A.; Vaca Bohórquez, M.L. Identificación y evaluación de la contaminación del agua por curtiembres en el municipio de Villapinzón. Tecnura 2012, 16, 185–193. [CrossRef]spa
dcterms.referencesCarreño, S.U.F. Diseño y evaluación de un biosistema de tratamiento a escala piloto de aguas de curtiembres a través de la Eichhornia crassipes. Rev. Colomb. Biotecnol. 2016, 18, 74–81. [CrossRef]spa
dcterms.referencesQuintero Salamanca, G.P.; Quijano Parra, A.; Melendez Gelvez, I. Efecto genotoxico del agua residual de la curtiembre San Faustino—Norte de Santander—Colombia. Rev. Colomb. Tecnol. Av. 2018, 2, 8–16. [CrossRef]spa
dcterms.referencesSchilling, K.; Bletterie, U.; Kroiss, H.; Zessner, M. Adapting the Austrian Edict on Wastewater Emissions for Tanneries as Consequence of Foam Formation on Surface Waters. Environ. Sci. Policy 2012, 23, 68–73. [CrossRef]spa
dcterms.referencesGenawi, N.M.; Ibrahim, M.H.; El-Naas, M.H.; Alshaik, A.E. Chromium Removal from Tannery Wastewater by Electrocoagulation: Optimization and Sludge Characterization. Water 2020, 12, 1374. [CrossRef]spa
dcterms.referencesTolkou, A.K.; Zouboulis, A.I. Application of Composite Pre-Polymerized Coagulants for the Treatment of High-Strength Industrial Wastewaters. Water 2020, 12, 1258. [CrossRef]spa
dcterms.referencesBharagava, R.N.; Mishra, S. Hexavalent Chromium Reduction Potential of Cellulosimicrobium sp. Isolated from Common Effluent Treatment Plant of Tannery Industries. Ecotoxicol. Environ. Saf. 2018, 147, 102–109. [CrossRef]spa
dcterms.referencesPalanisamy, D.; Chockalingam, L.R.; Murugan, D. Microbial Fuel Cell for Effluent Treatment and Sustainable Power Generation. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 1–13. [CrossRef]spa
dcterms.referencesTamil Selvan, S.; Velramar, B.; Ramamurthy, D.; Balasundaram, S.; Sivamani, K. Pilot Scale Wastewater Treatment, CO2 Sequestration and Lipid Production Using Microalga, Neochloris aquatica RDS02. Int. J. Phytoremed. 2020, 22, 1462–1479. [CrossRef] [PubMed]spa
dcterms.referencesMustapha, S.; Ndamitso, M.M.; Abdulkareem, A.S.; Tijani, J.O.; Mohammed, A.K.; Shuaib, D.T. Potential of Using Kaolin as a Natural Adsorbent for the Removal of Pollutants from Tannery Wastewater. Heliyon 2019, 5, e02923. [CrossRef]spa
dcterms.referencesYadav, A.; Raj, A.; Purchase, D.; Ferreira, L.F.R.; Saratale, G.D.; Bharagava, R.N. Phytotoxicity, Cytotoxicity and Genotoxicity Evaluation of Organic and Inorganic Pollutants Rich Tannery Wastewater from a Common Effluent Treatment Plant (CETP) in Unnao District, India Using Vigna radiata and Allium cepa. Chemosphere 2019, 224, 324–332. [CrossRef]spa
dcterms.referencesDas, C.; Naseera, K.; Ram, A.; Meena, R.M.; Ramaiah, N. Bioremediation of Tannery Wastewater by a Salt-Tolerant Strain of Chlorella Vulgaris. J. Appl. Phycol. 2017, 29, 235–243. [CrossRef]spa
dcterms.referencesSaranya, D.; Shanthakumar, S. An Integrated Approach for Tannery Effluent Treatment with Ozonation and Phycoremediation: A Feasibility Study. Environ. Res. 2020, 183, 109163. [CrossRef] [PubMed]spa
dcterms.referencesReyes-Serrano, A.; López-Alejo, J.E.; Hernández-Cortázar, M.A.; Elizalde, I. Removing Contaminants from Tannery Wastewater by Chemical Precipitation Using CaO and Ca(OH)2 . Chin. J. Chem. Eng. 2020, 28, 1107–1111. [CrossRef]spa
dcterms.referencesKhanh, T.K.; Jyh, L.H.; Quyet, V.T.; Tam, M.M.; Anh, P.T.; Kiefer, R. Hydrogen Production from the Tannery Wastewater Treatment by Using Agriculture Supports Membrane/Adsorbents Electrochemical System. Int. J. Hydrogen Energy 2020, 45, 3699–3711. [CrossRef]spa
dcterms.referencesBoujelben, R.; Ellouze, M.; Sayadi, S. Detoxification Assays of Tunisian Tannery Wastewater under Nonsterile Conditions Using the Filamentous Fungus Aspergillus niger. BioMed Res. Int. 2019, 2019, 9020178. [CrossRef]spa
dcterms.referencesGoswami, S.; Mazumder, D. Treatment of Chrome Tannery Wastewater by Biological Process–A Mini Review. Int. J. Environ. Ecol. Eng. 2013, 7, 798–804.spa
dcterms.referencesEl Mouhri, G.; Merzouki, M.; Belhassan, H.; Miyah, Y.; Amakdouf, H.; Elmountassir, R.; Lahrichi, A. Continuous Adsorption Modeling and Fixed Bed Column Studies: Adsorption of Tannery Wastewater Pollutants Using Beach Sand. J. Chem. 2020, 2020, 7613484. [CrossRef]spa
dcterms.referencesAguilar-Ascón, E.; Marrufo-Saldaña, L.; Neyra-Ascón, W. Reduction of Total Chromium Levels from Raw Tannery Wastewater via Electrocoagulation Using Response Surface Methodology. J. Ecol. Eng. 2019, 20, 217–224. [CrossRef]spa
dcterms.referencesKorpe, S.; Bethi, B.; Sonawane, S.H.; Jayakumar, K.V. Tannery Wastewater Treatment by Cavitation Combined with Advanced Oxidation Process (AOP). Ultrason. Sonochem. 2019, 59, 104723. [CrossRef] [PubMed]spa
dcterms.referencesAlemu, T.; Mekonnen, A.; Leta, S. Integrated Tannery Wastewater Treatment for Effluent Reuse for Irrigation: Encouraging Water Efficiency and Sustainable Development in Developing Countries. J. Water Process Eng. 2019, 30, 100514. [CrossRef]spa
dcterms.referencesCaliari, P.C.; Pacheco, M.J.; Ciríaco, L.; Lopes, A. Tannery Wastewater: Organic Load and Sulfide Removal Dynamics by Electrochemical Oxidation at Different Anode Materials. Environ. Technol. Innov. 2019, 14, 100345. [CrossRef]spa
dcterms.referencesHashem, M.A.; Momen, M.A.; Hasan, M.; Nur-A-Tomal, M.S.; Sheikh, M.H.R. Chromium Removal from Tannery Wastewater Using Syzygium Cumini Bark Adsorbent. Int. J. Environ. Sci. Technol. 2019, 16, 1395–1404. [CrossRef]spa
dcterms.referencesAshraf, S.; Naveed, M.; Afzal, M.; Ashraf, S.; Rehman, K.; Hussain, A.; Zahir, Z.A. Bioremediation of Tannery Effluent by Cr- and Salt-Tolerant Bacterial Strains. Environ. Monit. Assess. 2018, 190, 716. [CrossRef]spa
dcterms.referencesKozik, V.; Barbusinski, K.; Thomas, M.; Sroda, A.; Jampilek, J.; Sochanik, A.; Smolinski, A.; Bak, A. Taguchi Method and Response Surface Methodology in the Treatment of Highly Contaminated Tannery Wastewater Using Commercial Potassium Ferrate. Materials 2019, 12, 3784. [CrossRef]spa
dcterms.referencesMeenachi, S.; Kandasamy, S. Pre-Treatment of Tannery Chrome Wastewater by Green Synthesised Iron Oxide Nanocatalyst. Int. J. Environ. Anal. Chem. 2019, 1–13. [CrossRef]spa
dcterms.referencesUllah, R.; Ahmad, W.; Ahmad, I.; Khan, M.; Iqbal Khattak, M.; Hussain, F. Adsorption and Recovery of Hexavalent Chromium from Tannery Wastewater over Magnetic Max Phase Composite. Sep. Sci. Technol. 2021, 56, 439–452. [CrossRef]spa
dcterms.referencesLe, L.T. Tannery Wastewater Treatment after Activated Sludge Pre-Treatment Using Electro-Oxidation on Inactive Anodes. Clean Technol. Environ. Policy 2020, 22, 1701–1713. [CrossRef]spa
dcterms.referencesPal, M.; Malhotra, M.; Mandal, M.K.; Paine, T.K.; Pal, P. Recycling of Wastewater from Tannery Industry through MembraneIntegrated Hybrid Treatment Using a Novel Graphene Oxide Nanocomposite. J. Water Process Eng. 2020, 36, 101324. [CrossRef]spa
dcterms.referencesZhou, L.; Zhang, W.; De Costa, Y.G.; Zhuang, W.-Q.; Yi, S. Assessing Inorganic Components of Cake Layer in A/O Membrane Bioreactor for Physical-Chemical Treated Tannery Effluent. Chemosphere 2020, 250, 126220. [CrossRef] [PubMed]spa
dcterms.referencesZapana, J.S.P.; Arán, D.S.; Bocardo, E.F.; Harguinteguy, C.A. Treatment of Tannery Wastewater in a Pilot Scale Hybrid Constructed Wetland System in Arequipa, Peru. Int. J. Environ. Sci. Technol. 2020, 17, 4419–4430. [CrossRef]spa
dcterms.referencesArukula, D.; Prem, P.; Tanwi, P.; Hariraj, S.; Vijay, L.M.; Brijesh, K.M. Treatment of tannery wastewater using aluminium formate: Influence of the formate over sulphate-based coagulant. Glob. NEST J. 2018, 20, 458–464. [CrossRef]spa
dcterms.referencesChatterjee, S.; Shekhawat, K.; Gupta, N. Bioreduction of Toxic Hexavalent Chromium by Novel Indigenous Microbe Brevibacillus agri Isolated from Tannery Wastewater. Int. J. Environ. Sci. Technol. 2019, 16, 3549–3556. [CrossRef]spa
dcterms.referencesChaudhary, P.; Beniwal, V.; Kaur, R.; Kumar, R.; Kumar, A.; Chhokar, V. Efficacy of Aspergillus Fumigatus MCC 1175 for Bioremediation of Tannery Wastewater. Clean Soil Air Water 2019, 47, 1900131. [CrossRef]spa
dcterms.referencesBelay, A. Impacts of Chromium from Tannery Effluent and Evaluation of Alternative Treatment Options. J. Environ Prot. 2010, 1, 53–58.spa
dcterms.references. Cotman, M.; Zagorc-Konˇcan, J.; Žgajnar-Gotvajn, A. The Relationship between Composition and Toxicity of Tannery Wastewater. Water Sci. Technol. 2004, 49, 39–46. [CrossRef]spa
dcterms.referencesAshley, B.B.; Puspha, L.E.; Annadurai, G. Physicochemical Characteristics, Isolation and Screening Of Bacteria For Degradation Of Dyes From Tannery Effluents. Res. J. Life Sci. Bioinf. Pharm. Chem. Sci. 2019, 5, 144–158. [CrossRef]spa
dcterms.referencesGutterres, M.; Mella, B. Chromium in Tannery Wastewater. In Heavy Metals in Water: Presence, Removal and Safety; The Royal Society of Chemistry: London, UK, 2015; pp. 315–344. [CrossRef]spa
dcterms.referencesPrabhahar, C.; Saleshrani, K.; Tharmaraj, K. Seasonal Variation of Heavy Metals Distribution and Sediments in Palar River in and Around Vaniyambadi Segment, Vellore District, Tamil Nadu, India. Int. J. Pharm. Biol. Sci. Arch. 2012, 3, 112–116. Available online: https://www.ijpba.info/ijpba/index.php/ijpba/article/view/546 (accessed on 22 March 2021).spa
dcterms.referencesSawalha, H.; Alsharabaty, R.; Sarsour, S.; Al-Jabari, M. Wastewater from Leather Tanning and Processing in Palestine: Characterization and Management Aspects. J. Environ. Manag. 2019, 251, 109596. [CrossRef] [PubMed]spa
dcterms.referencesTamersit, S.; Bouhidel, K.-E.; Zidani, Z. Investigation of Electrodialysis Anti-Fouling Configuration for Desalting and Treating Tannery Unhairing Wastewater: Feasibility of by-Products Recovery and Water Recycling. J. Environ. Manag. 2018, 207, 334–340. [CrossRef] [PubMed]spa
dcterms.referencesQuijano Parra, A.; Castillo, T.C.; Meléndez Gélvez, I. Potencial mutagénico y genotóxico de aguas residuales de la curtiembre tasajero en la ciudad de Cúcuta, Norte de Santander, Colombia. Rev. U.D.C.A Actual. Divulg. Científica 2015, 18, 13–20. Available online: http://www.scielo.org.co/scielo.php?pid=S0123-42262015000100003&script=sci_abstract&tlng=es (accessed on 22 March 2021). [CrossRef]spa
dcterms.referencesMeriç, S.; De Nicola, E.; Iaccarino, M.; Gallo, M.; Di Gennaro, A.; Morrone, G.; Warnau, M.; Belgiorno, V.; Pagano, G. Toxicity of Leather Tanning Wastewater Effluents in Sea Urchin Early Development and in Marine Microalgae. Chemosphere 2005, 61, 208–217. [CrossRef]spa
dcterms.referencesLv, W.; Zhao, K.; Ma, S.; Kong, L.; Dang, Z.; Chen, J.; Zhang, Y.; Hu, J. Process of Removing Heavy Metal Ions and Solids Suspended in Micro-Scale Intensified by Hydrocyclone. J. Clean. Prod. 2020, 263, 121533. [CrossRef]spa
dcterms.referencesDiaz-Angulo, J.; Porras, J.; Mueses, M.; Torres-Palma, R.A.; Hernandez-Ramirez, A.; Machuca-Martinez, F. Coupling of heterogeneous photocatalysis and photosensitized oxidation for diclofenac degradation: Role of the oxidant species. J. Photochem. Photobiol. A Chem. 2019, 383, 112015. [CrossRef]spa
dcterms.referencesSong, Z.; Williams, C.J.; Edyvean, R.G.J. Treatment of Tannery Wastewater by Chemical Coagulation. Desalination 2004, 164, 249–259. [CrossRef]spa
dcterms.referencesAchouri, O.; Panico, A.; Bencheikh-Lehocine, M.; Derbal, K.; Pirozzi, F. Effect of Chemical Coagulation Pretreatment on Anaerobic Digestion of Tannery Wastewater. J. Environ. Eng. 2017, 143, 4017039. [CrossRef]spa
dcterms.referencesDonneys-Victoria, D.; Bermúdez-Rubio, D.; Torralba-Ramírez, B.; Marriaga-Cabrales, N.; Machuca-Martínez, F. Removal of indigo carmine dye by electrocoagulation using magnesium anodes with polarity change. Environ. Sci. Pollut. Res. 2019, 26, 7164–7176. [CrossRef] [PubMed]spa
dcterms.referencesLara-Ramos, J.A.; Saez, C.; Machuca-Martínez, F.; Rodrigo, M.A. Electro-ozonizers: A new approach for an old problem. Sep. Purif. Technol. 2020, 241. [CrossRef]spa
dcterms.references. Mayta, R.; Mayta, J. Remoción de Cromo y Demanda Química de Oxígeno de Aguas Residuales de Curtiembre Por Electrocoagulación. Rev. Soc. Química Perú 2017, 83, 331–340. Available online: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid= S1810-634X2017000300008 (accessed on 22 March 2021). [CrossRef]spa
dcterms.referencesSanchez-Galvis, E.M.; Cardenas-Gutierrez, I.Y.; Contreras-Ropero, J.E.; García-Martínez, J.B.; Barajas-Solano, A.F.; Zuorro, A. An Innovative Low-Cost Equipment for Electro-Concentration of Microalgal Biomass. Appl. Sci. 2020, 10, 4841. [CrossRef]spa
dcterms.referencesCastellanos-Estupiñan, M.A.; Sánchez-Galvis, E.M.; García-Martínez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F. Design of an Electroflotation System for the Concentration and Harvesting of Freshwater Microalgae. Chem. Eng. Trans. 2018, 64, 1–6. [CrossRef]spa
dcterms.referencesSengil, ˙I.A.; Kulaç, S.; Özacar, M. Treatment of Tannery Liming Drum Wastewater by Electrocoagulation. J. Hazard. Mater. 2009, 167, 940–946. [CrossRef]spa
dcterms.referencesDeghles, A.; Kurt, U. Treatment of Tannery Wastewater by a Hybrid Electrocoagulation/Electrodialysis Process. Chem. Eng. Process. Process Intensif. 2016, 104, 43–50. [CrossRef]spa
dcterms.referencesSzpyrkowicz, L.; Kaul, S.N.; Neti, R.N. Tannery Wastewater Treatment by Electro-Oxidation Coupled with a Biological Process. J. Appl. Electrochem. 2005, 35, 381–390. [CrossRef]spa
dcterms.referencesMandal, T.; Dasgupta, D.; Mandal, S.; Datta, S. Treatment of Leather Industry Wastewater by Aerobic Biological and Fenton Oxidation Process. J. Hazard. Mater. 2010, 180, 204–211. [CrossRef]spa
dcterms.referencesMartín-Domínguez, A.; Rivera-Huerta, M.L.; Pérez-Castrejón, S.; Garrido-Hoyos, S.E.; Villegas-Mendoza, I.E.; Gelover-Santiago, S.L.; Drogui, P.; Buelna, G. Chromium removal from drinking water by redox-assisted coagulation: Chemical versus electrocoagulation. Sep. Purif. Technol. 2018, 200, 266–272. [CrossRef]spa
dcterms.referencesda Silva, G.S.; dos Santos, F.A.; Roth, G.; Frankenberg, C.L.C. Electroplating for chromium removal from tannery wastewater. Int. J. Environ. Sci. Technol. 2020, 17, 607–614. [CrossRef]spa
dcterms.referencesProtsenko, V.; Danilov, F. Kinetics and mechanism of chromium electrodeposition from formate and oxalate solutions of Cr(III) compounds. Electrochim. Acta 2009, 54, 5666–5672. [CrossRef]spa
dcterms.referencesKorshunov, V.N.; Safonov, V.A.; Vykhodtseva, L.N. Structural features of the electrode/solution interface at the reduction of Cr3+(aq) cations on liquid mercury and solid indium electrodes in acidic media. Russ. J. Electrochem. 2008, 44, 255–264. [CrossRef]spa
dcterms.referencesAmeta, R.K.; Chohadia, A.; Jain, A.; Punjabi, P.B. Fenton and Photo-Fenton Processes. In Advanced Oxidation Processes for Waste Water Treatment, 1st ed.; Ameta, S.C., Ed.; Academic Press: London, UK, 2018; pp. 49–87. [CrossRef]spa
dcterms.referencesNatarajan, T.S.; Natarajan, K.; Bajaj, H.C.; Tayade, R.J. Study on Identification of Leather Industry Wastewater Constituents and Its Photocatalytic Treatment. Int. J. Environ. Sci. Technol. 2013, 10, 855–864. [CrossRef]spa
dcterms.referencesBetancourt-Buitrago, L.A.; Hernandez-Ramirez, A.; Colina-Marquez, J.A.; Bustillo-Lecompte, C.F.; Rehmann, L.; MachucaMartinez, F. Recent developments in the photocatalytic treatment of cyanide wastewater: An approach to remediation and recovery of metals. Processes 2019, 7, 225. [CrossRef]spa
dcterms.referencesAcosta-Herazo, R.; Cañaveral-Velásquez, B.; Pérez-Giraldo, K.; Mueses, M.A.; Pinzón-Cárdenas, M.H.; Machuca-Martínez, F. A MATLAB-based application for modeling and simulation of solar Slurry photocatalytic reactors for environmental applications. Water 2020, 12, 2196. [CrossRef]spa
dcterms.referencesVilardi, G.; Ochando-Pulido, J.M.; Stoller, M.; Verdone, N.; Di Palma, L. Fenton Oxidation and Chromium Recovery from Tannery Wastewater by Means of Iron-Based Coated Biomass as Heterogeneous Catalyst in Fixed-Bed Columns. Chem. Eng. J. 2018, 351, 1–11. [CrossRef]spa
dcterms.referencesLofrano, G.; Meric, S.; Inglese, M.; Nikolau, A.; Belgiorno, V. Fenton Oxidation Treatment of Tannery Wastewater and Tanning Agents: Synthetic Tannin and Nonylphenol Ethoxylate Based Degreasing Agent. Desalin. Water Treat. 2010, 23, 173–180. [CrossRef]spa
dcterms.referencesJessieleena, A.A.; Priyanka, M.; Saravanakumar, M.P. Comparative Study of Fenton, Fe2+/NaOCl and Fe2+/(NH4 )2S2O8 on Tannery Sludge Dewaterability, Degradability of Organics and Leachability of Chromium. J. Hazard. Mater. 2021, 402, 123495. [CrossRef]spa
dcterms.referencesBorba, F.H.; Pellenz, L.; Bueno, F.; Inticher, J.J.; Braun, L.; Espinoza-Quiñones, F.R.; Trigueros, D.E.G.; de Pauli, A.R.; Módenes, A.N. Pollutant Removal and Biodegradation Assessment of Tannery Effluent Treated by Conventional Fenton Oxidation Process. J. Environ. Chem. Eng. 2018, 6, 7070–7079. [CrossRef]spa
dcterms.referencesTwort, A.C.; Ratnayaka, D.D.; Brandt, M.J. (Eds.) Specialised and Advanced Water Treatment Processes. In Water Supply, 5th ed.; Butterworth-Heinemann: London, UK, 2000; pp. 406–408. [CrossRef]spa
dcterms.referencesMódenes, A.N.; Espinoza-Quiñones, F.R.; Borba, F.H.; Manenti, D.R. Performance Evaluation of an Integrated Photo-Fenton— Electrocoagulation Process Applied to Pollutant Removal from Tannery Effluent in Batch System. Chem. Eng. J. 2012, 197, 1–9. [CrossRef]spa
dcterms.referencesIkehata, K.; Li, Y. Ozone-Based Processes. In Advanced Oxidation Processes for Waste Water Treatment, 1st ed.; Ameta, S.C., Ed.; Academic Press: London, UK, 2018; pp. 115–143. [CrossRef]spa
dcterms.referencesDi Iaconi, C. Biological Treatment and Ozone Oxidation: Integration or Coupling. Bioresour. Technol. 2012, 106, 63–68. [CrossRef] [PubMed]spa
dcterms.referencesRadha, K.V.; Sirisha, K. Electrochemical Oxidation Processes. In Advanced Oxidation Processes for Waste Water Treatment, 1st ed.; Ameta, S.C., Ed.; Academic Press: London, UK, 2018; pp. 359–373. [CrossRef]spa
dcterms.referencesHoushyar, Z.; Khoshfetrat, A.B.; Fatehifar, E. Influence of Ozonation Process on Characteristics of Pre-Alkalized Tannery Effluents. Chem. Eng. J. 2012, 191, 59–65. [CrossRef]spa
dcterms.referencesSivagami, K.; Sakthivel, K.P.; Nambi, I.M. Advanced Oxidation Processes for the Treatment of Tannery Wastewater. J. Environ. Chem. Eng. 2018, 6, 3656–3663. [CrossRef]spa
dcterms.referencesDi Iaconi, C.; Del Moro, G.; De Sanctis, M.; Rossetti, S. A Chemically Enhanced Biological Process for Lowering Operative Costs and Solid Residues of Industrial Recalcitrant Wastewater Treatment. Water Res. 2010, 44, 3635–3644. [CrossRef]spa
dcterms.referencesSundarapandiyan, S.; Chandrasekar, R.; Ramanaiah, B.; Krishnan, S.; Saravanan, P. Electrochemical Oxidation and Reuse of Tannery Saline Wastewater. J. Hazard. Mater. 2010, 180, 197–203. [CrossRef]spa
dcterms.referencesCruz-Rizo, A.; Gutiérrez-Granados, S.; Salazar, R.; Peralta-Hernández, J.M. Application of Electro-Fenton/BDD Process for Treating Tannery Wastewaters with Industrial Dyes. Sep. Purif. Technol. 2017, 172, 296–302. [CrossRef]spa
dcterms.referencesMedrano-Rodríguez, F.; Picos-Benítez, A.; Brillas, E.; Bandala, E.R.; Pérez, T.; Peralta-Hernández, J.M. Electrochemical Advanced Oxidation Discoloration and Removal of Three Brown Diazo Dyes Used in the Tannery Industry. J. Electroanal. Chem. 2020, 873, 114360. [CrossRef]spa
dcterms.referencesMoradi, M.; Moussavi, G. Enhanced Treatment of Tannery Wastewater Using the Electrocoagulation Process Combined with UVC/VUV Photoreactor: Parametric and Mechanistic Evaluation. Chem. Eng. J. 2019, 358, 1038–1046. [CrossRef]spa
dcterms.referencesVaiano, V.; Iervolino, G. Facile Method to Immobilize ZnO Particles on Glass Spheres for the Photocatalytic Treatment of Tannery Wastewater. J. Colloid Interface Sci. 2018, 518, 192–199. [CrossRef] [PubMed]spa
dcterms.referencesGoutam, S.P.; Saxena, G.; Singh, V.; Yadav, A.K.; Bharagava, R.N.; Thapa, K.B. Green Synthesis of TiO2 Nanoparticles Using Leaf Extract of Jatropha curcas L. for Photocatalytic Degradation of Tannery Wastewater. Chem. Eng. J. 2018, 336, 386–396. [CrossRef]spa
dcterms.referencesTien, T.T.; Luu, T.L. Electrooxidation of Tannery Wastewater with Continuous Flow System: Role of Electrode Materials. Environ. Eng. Res. 2020, 25, 324–334. [CrossRef]spa
dcterms.referencesKorpe, S.; Rao, P.V. Application of advanced oxidation processes and cavitation techniques for treatment of tannery wastewater— A review. J. Environ. Chem. Eng. 2021, 9, 105234. [CrossRef]spa
dcterms.referencesRahim Pouran, S.; Abdul Aziz, A.R.; Wan Daud, W.M.A. Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. J. Ind. Eng. Chem. 2015, 21, 53–69. [CrossRef]spa
dcterms.referencesArslan-Alaton, I.; Gurses, F. Photo-Fenton-like and photo-fenton-like oxidation of Procaine Penicillin G formulation effluent. J. Photochem. Photobiol. A Chem. 2004, 3, 165–175. [CrossRef]spa
dcterms.referencesSivakumar, V.; Anna, J.L.; Vijayeeswarri, J.; Swaminathan, G. Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather. Ultrason. Sonochem. 2009, 16, 782–789. [CrossRef]spa
dcterms.referencesSchrank, S.G.; José, H.J.; Moreira, R.F.P.M.; Schröder, H.F. Applicability of fenton and H2O2/UV reactions in the treatment of tannery wastewaters. Chemosphere 2005, 60, 644–655. [CrossRef]spa
dcterms.referencesJiménez, E.; Gilles, M.K.; Ravishankara, A.R. Kinetics of the reactions of the hydroxyl radical with CH3OH and C2H5OH between 235 and 360 K. J. Photochem. Photobiol. A Chem. 2003, 157, 237–245. [CrossRef]spa
dcterms.referencesSun, X.; Liu, J.; Ji, L.; Wang, G.; Zhao, S.; Yoon, J.Y.; Chen, S. A review on hydrodynamic cavitation disinfection: The current state of knowledge. Sci. Total Environ. 2020, 737. [CrossRef] [PubMed]spa
dcterms.referencesGogate, P.R.; Patil, P.N. Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes. Ultrason. Sonochem. 2015, 25, 60–69. [CrossRef] [PubMed]spa
dcterms.referencesAmbrogi, E.; Asenath-Smith, E.; Ballard, W.; Moores, L.; Brame, J. Cross-Comparison of Advanced Oxidation Processes for Remediation of Organic Pollutants in Water Treatment Systems. In ERDC Program Element 622720048, “Industrial Operations Pollution Control Guidance”; U.S. Army Corps of Engineers: Washington, DC, USA, 2019.spa
dcterms.referencesReport, I.T.; Bolton, J.R.; Bircher, K.G.; Tumas, W.; Tolman, C.A. Figures-of-merit for the technical development and application of advanced electric- and solar-driven systems (IUPAC Technical Report). Pure Appl. Chem. 2001, 73, 627–637.spa
dcterms.referencesCapodaglio, A.G. Contaminants of emerging concern removal by high-energy oxidation-reduction processes: State of the art. Appl. Sci. 2019, 9, 4562. [CrossRef]spa
dcterms.referencesWardenier, N.; Liu, Z.; Nikiforov, A.; Van Hulle, S.W.H.; Leys, C. Micropollutant elimination by O3 , UV and plasma-based AOPs: An evaluation of treatment and energy costs. Chemosphere 2019, 234, 715–724. [CrossRef]spa
dcterms.referencesSoares, P.A.; Silva, T.F.C.V.; Ramos Arcy, A.; Souza, S.M.A.G.U.; Boaventura, R.A.R.; Vilar, V.J.P. Assessment of AOPs as a polishing step in the decolourisation of bio-treated textile wastewater: Technical and economic considerations. J. Photochem. Photobiol. A Chem. 2016, 317, 26–38. [CrossRef]spa
dcterms.referencesMahamuni, N.N.; Adewuyi, Y.G. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrason. Sonochem. 2010, 17, 990–1003. [CrossRef]spa
dcterms.referencesGomes, A.I.; Soares, T.F.; Silva, T.F.C.V.; Boaventura, R.A.R.; Vilar, V.J.P. Ozone-driven processes for mature urban landfill leachate treatment: Organic matter degradation, biodegradability enhancement and treatment costs for different reactors configuration. Sci. Total Environ. 2020, 724. [CrossRef]spa
dcterms.referencesIsarain-chávez, E.; De, C.; Godínez, L.A.; Brillas, E.; Peralta-hernández, J.M. Comparative study of electrochemical water treatment processes for a tannery wastewater effluent. J. Electroanal. Chem. 2014, 713, 62–69. [CrossRef]spa
dcterms.referencesVijayalakshmi, P.; Raju, G.B.; Gnanamani, A. Advanced oxidation and electrooxidation as tertiary treatment techniques to improve the purity of tannery wastewater. Ind. Eng. Chem. Res. 2011, 50, 10194–10200. [CrossRef]spa
dcterms.referencesLofrano, G.; Meriç, S.; Zengin, G.E.; Orhon, D. Chemical and Biological Treatment Technologies for Leather Tannery Chemicals and Wastewaters: A Review. Sci. Total Environ. 2013, 461, 265–281. [CrossRef]spa
dcterms.referencesMpofu, A.B.; Oyekola, O.O.; Welz, P.J. Anaerobic treatment of tannery wastewater in the context of a circular bioeconomy for developing countries. J. Clean. Prod. 2021, 296, 126490. [CrossRef]spa
dcterms.referencesGracePavithra, K.; Jaikumar, V.; Kumar, P.S.; SundarRajan, P.S. A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. J. Clean. Prod. 2019, 228, 580–593. [CrossRef]spa
dcterms.referencesLei, C.; Lin, Y.; Zeng, Y.; Wang, Y.; Yuan, Y.; Shi, B. A Cleaner Deliming Technology with Glycine for Ammonia-Nitrogen Reduction in Leather Manufacture. J. Clean. Prod. 2020, 245, 118900. [CrossRef]spa
dcterms.referencesHaydar, S.; Aziz, J.A.; Ahmad, M.S. Biological Treatment of Tannery Wastewater Using Activated Sludge Process. Pak. J. Eng. Appl. Sci. 2007, 1, 61–66.spa
dcterms.referencesFathima, A.; Rao, J.R.; Unni Nair, B. Trivalent Chromium Removal from Tannery Effluent Using Kaolin-Supported Bacterial Biofilm of Bacillus Sp Isolated from Chromium Polluted Soil. J. Chem. Technol. Biotechnol. 2012, 87, 271–279. [CrossRef]spa
dcterms.referencesShanmugam, B.K.; Easwaran, S.N.; Mohanakrishnan, A.S.; Kalyanaraman, C.; Mahadevan, S. Biodegradation of Tannery Dye Effluent Using Fenton’s Reagent and Bacterial Consortium: A Biocalorimetric Investigation. J. Environ. Manag. 2019, 242, 106–113. [CrossRef]spa
dcterms.referencesKanagaraj, J.; Senthil Velan, T.; Mandal, A.B. Biological Method for Decolourisation of an Azo Dye: Clean Technology to Reduce Pollution Load in Dye Waste Water. Clean Technol. Environ. Policy 2012, 14, 565–572. [CrossRef]spa
dcterms.referencesSundar, K.; Sadiq, I.M.; Mukherjee, A.; Chandrasekaran, N. Bioremoval of Trivalent Chromium Using Bacillus Biofilms through Continuous Flow Reactor. J. Hazard. Mater. 2011, 196, 44–51. [CrossRef] [PubMed]spa
dcterms.referencesMahmood, S.; Khalid, A.; Mahmood, T.; Arshad, M.; Ahmad, R. Potential of Newly Isolated Bacterial Strains for Simultaneous Removal of Hexavalent Chromium and Reactive Black-5 Azo Dye from Tannery Effluent. J. Chem. Technol. Biotechnol. 2013, 88, 1506–1513. [CrossRef]spa
dcterms.referencesChandrasekaran, K.; Selvaraj, H.; George, H.S.; Sundaram, M.; Khaleel, T.M. A Hybrid Treatment Process for Product Recycling from Tannery Process Effluent and Soak Liquor. J. Environ. Chem. Eng. 2020, 8, 103516. [CrossRef]spa
dcterms.referencesSathishkumar, K.; Narenkumar, J.; Selvi, A.; Murugan, K.; Babujanarthanam, R.; Rajasekar, A. Treatment of Soak Liquor and Bioelectricity Generation in Dual Chamber Microbial Fuel Cell. Environ. Sci. Pollut. Res. 2018, 25, 11424–11430. [CrossRef]spa
dcterms.referencesMuneeb, M.; Rashid, M.; Javid, A.; Bukhari, S.M.; Ali, W.; Hasan, A.; Akmal, M.; Hussain, A. Concomitant Treatment of Tannery and Paper Mill Effluents Using Extremely Metal-Tolerant Sulphate-Reducing Bacteria. Environ. Process. 2020, 7, 243–253. [CrossRef]spa
dcterms.referencesChandrasekaran, K.; Selvaraj, H.; Sundaram, M. Electrochemical Oxidation with the Aerobic Pretreatment Process for Sulfate-Rich Tannery Effluent. Environ. Sci. Pollut. Res. 2019, 26, 12194–12204. [CrossRef] [PubMed]spa
dcterms.referencesElahi, A.; Ajaz, M.; Rehman, A.; Vuilleumier, S.; Khan, Z.; Hussain, S.Z. Isolation, Characterization, and Multiple Heavy MetalResistant and Hexavalent Chromium-Reducing Microbacterium testaceum B-HS2 from Tannery Effluent. J. King Saud Univ. Sci. 2019, 31, 1437–1444. [CrossRef]spa
dcterms.referencesHuang, G.; Ou, L.; Pan, F.; Wang, Y.; Fan, G.; Liu, G.; Wang, W. Isolation of a Novel Heterotrophic Nitrification–Aerobic Denitrification Bacterium Serratia Marcescens CL1502 from Deep-Sea Sediment. Environ. Eng. Sci. 2017, 34, 453–459. [CrossRef]spa
dcterms.referencesChaudhuri, G.; Dey, P.; Dalal, D.; Venu-Babu, P.; Thilagaraj, W.R. A Novel Approach to Precipitation of Heavy Metals from Industrial Effluents and Single-Ion Solutions Using Bacterial Alkaline Phosphatase. Water Air Soil Pollut. 2013, 224, 1625. [CrossRef]spa
dcterms.referencesPire-Sierra, M.C.; Cegarra-Badell, D.D.; Carrasquero-Ferrer, S.J.; Angulo-Cubillan, N.E.; Díaz-Montiel, A.R. Nitrogen and COD removal from tannery wastewater using biological and physicochemical treatments. Rev. Fac. Ing. Univ. Antioq. 2016, 80, 63–73. [CrossRef]spa
dcterms.referencesKim, I.-S.; Ekpeghere, K.I.; Ha, S.-Y.; Kim, B.-S.; Song, B.; Kim, J.-T.; Kim, H.-G.; Koh, S.-C. Full-Scale Biological Treatment of Tannery Wastewater Using the Novel Microbial Consortium BM-S-1. J. Environ. Sci. Health Part A 2014, 49, 355–364. [CrossRef]spa
dcterms.referencesVijayaraj, A.S.; Mohandass, C.; Joshi, D.; Rajput, N. Effective Bioremediation and Toxicity Assessment of Tannery Wastewaters Treated with Indigenous Bacteria. 3 Biotech 2018, 8, 428. [CrossRef]spa
dcterms.referencesGarg, S.K.; Garg, S.; Tripathi, M.; Singh, K. Microbial Treatment of Tannery Effluent by Augmenting Psychrotrophic Pseudomonas putida Isolate. Environ. Pollut. Prot. 2018, 3, 23–39. [CrossRef]spa
dcterms.referencesUddin, M.J.; Jeong, Y.-K.; Lee, W. Microbial Fuel Cells for Bioelectricity Generation through Reduction of Hexavalent Chromium in Wastewater: A Review. Int. J. Hydrogen Energy 2021, 46, 11458–11481. [CrossRef]spa
dcterms.referencesMunoz-Cupa, C.; Hu, Y.; Xu, C.; Bassi, A. An Overview of Microbial Fuel Cell Usage in Wastewater Treatment, Resource Recovery and Energy Production. Sci. Total Environ. 2021, 754, 142429. [CrossRef] [PubMed]spa
dcterms.referencesSawasdee, V.; Pisutpaisal, N. Simultaneous Pollution Treatment and Electricity Generation of Tannery Wastewater in Air-Cathode Single Chamber MFC. Int. J. Hydrogen Energy 2016, 41, 15632–15637. [CrossRef]spa
dcterms.referencesChen, F.; Zeng, S.; Luo, Z.; Ma, J.; Zhu, Q.; Zhang, S. A Novel MBBR–MFC Integrated System for High-Strength Pulp/Paper Wastewater Treatment and Bioelectricity Generation. Sep. Sci. Technol. 2020, 55, 2490–2499. [CrossRef]spa
dcterms.referencesNaina Mohamed, S.; Ajit Hiraman, P.; Muthukumar, K.; Jayabalan, T. Bioelectricity Production from Kitchen Wastewater Using Microbial Fuel Cell with Photosynthetic Algal Cathode. Bioresour. Technol. 2020, 295, 122226. [CrossRef]spa
dcterms.referencesAmutha, R.; Josiah, J.J.M.; Adriel Jebin, J.; Jagannathan, P.; Berchmans, S. Chromium Hexacyanoferrate as a Cathode Material in Microbial Fuel Cells. J. Appl. Electrochem. 2010, 40, 1985–1990. [CrossRef]spa
dcterms.referencesWłodarczyk, P.P.; Włodarczyk, B. Wastewater Treatment and Electricity Production in a Microbial Fuel Cell with Cu–B Alloy as the Cathode Catalyst. Catalysts 2019, 9, 572. [CrossRef]spa
dcterms.referencesTanikkul, P.; Pisutpaisal, N. Membrane-Less MFC Based Biosensor for Monitoring Wastewater Quality. Int. J. Hydrogen Energy 2018, 43, 483–489. [CrossRef]spa
dcterms.referencesLiu, L.; Yuan, Y.; Li, F.; Feng, C. In-Situ Cr(VI) Reduction with Electrogenerated Hydrogen Peroxide Driven by Iron-Reducing Bacteria. Bioresour. Technol. 2011, 102, 2468–2473. [CrossRef] [PubMed]spa
dcterms.referencesSinghvi, P.; Chhabra, M. Simultaneous Chromium Removal and Power Generation Using Algal Biomass in a Dual Chambered Salt Bridge Microbial Fuel Cell. J. Bioremediat. Biodegrad. 2013, 4, 190. [CrossRef]spa
dcterms.referencesSophia, A.C.; Saikant, S. Reduction of Chromium(VI) with Energy Recovery Using Microbial Fuel Cell Technology. J. Water Process Eng. 2016, 11, 39–45. [CrossRef]spa
dcterms.referencesWatanabe, K. Recent Developments in Microbial Fuel Cell Technologies for Sustainable Bioenergy. J. Biosci. Bioeng. 2008, 106, 528–536. [CrossRef]spa
dcterms.referencesSonawane, J.M.; Adeloju, S.B.; Ghosh, P.C. Landfill Leachate: A Promising Substrate for Microbial Fuel Cells. Int. J. Hydrogen Energy 2017, 42, 23794–23798. [CrossRef]spa
dcterms.referencesRittmann, B.E. Opportunities for Renewable Bioenergy Using Microorganisms. Biotechnol. Bioeng. 2008, 100, 203–212. [CrossRef] [PubMed]spa
dcterms.referencesZhang, B.; Feng, C.; Ni, J.; Zhang, J.; Huang, W. Simultaneous Reduction of Vanadium (V) and Chromium (VI) with Enhanced Energy Recovery Based on Microbial Fuel Cell Technology. J. Power Sources 2012, 204, 34–39. [CrossRef]spa
dcterms.referencesTandukar, M.; Huber, S.J.; Onodera, T.; Pavlostathis, S.G. Biological Chromium(VI) Reduction in the Cathode of a Microbial Fuel Cell. Environ. Sci. Technol. 2009, 43, 8159–8165. [CrossRef]spa
dcterms.referencesTang, D.Y.Y.; Khoo, K.S.; Chew, K.W.; Tao, Y.; Ho, S.-H.; Show, P.L. Potential Utilization of Bioproducts from Microalgae for the Quality Enhancement of Natural Products. Bioresour. Technol. 2020, 304, 122997. [CrossRef]spa
dcterms.referencesBallén-Segura, M.; Hernández Rodríguez, L.; Parra Ospina, D.; Vega Bolaños, A.; Pérez, K. Using Scenedesmus sp. for the Phycoremediation of Tannery Wastewater. Tecciencia 2016, 11, 69–75. [CrossRef]spa
dcterms.referencesSydney, E.B.; Schafranski, K.; Barretti, B.R.V.; Sydney, A.C.N.; Zimmerman, J.F.D.; Cerri, M.L.; Mottin Demiate, I. Biomolecules from Extremophile Microalgae: From Genetics to Bioprocessing of a New Candidate for Large-Scale Production. Process Biochem. 2019, 87, 37–44. [CrossRef]spa
dcterms.referencesSadvakasova, A.K.; Akmukhanova, N.R.; Bolatkhan, K.; Zayadan, B.K.; Usserbayeva, A.A.; Bauenova, M.O.; Akhmetkaliyeva, A.E.; Allakhverdiev, S.I. Search for New Strains of Microalgae-Producers of Lipids from Natural Sources for Biodiesel Production. Int. J. Hydrogen Energy 2019, 44, 5844–5853. [CrossRef]spa
dcterms.referencesDas, C.; Ramaiah, N.; Pereira, E.; Naseera, K. Efficient Bioremediation of Tannery Wastewater by Monostrains and Consortium of Marine Chlorella sp. and Phormidium sp. Int. J. Phytoremed. 2018, 20, 284–292. [CrossRef] [PubMed]spa
dcterms.referencesDelgadillo-Mirquez, L.; Lopes, F.; Taidi, B.; Pareau, D. Nitrogen and Phosphate Removal from Wastewater with a Mixed Microalgae and Bacteria Culture. Biotechnol. Rep. 2016, 11, 18–26. [CrossRef] [PubMed]spa
dcterms.referencesChen, C.-Y.; Kuo, E.-W.; Nagarajan, D.; Ho, S.-H.; Dong, C.-D.; Lee, D.-J.; Chang, J.-S. Cultivating Chlorella sorokiniana AK1 with Swine Wastewater for Simultaneous Wastewater Treatment and Algal Biomass Production. Bioresour. Technol. 2020, 302, 122814. [CrossRef]spa
dcterms.referencesMsanne, J.; Polle, J.; Starkenburg, S. An Assessment of Heterotrophy and Mixotrophy in Scenedesmus and Its Utilization in Wastewater Treatment. Algal Res. 2020, 48, 101911. [CrossRef]spa
dcterms.references. Vidyalaxmi; Kaushik, G.; Raza, K. Potential of Novel Dunaliella salina from Sambhar Salt Lake, India, for Bioremediation of Hexavalent Chromium from Aqueous Effluents: An Optimized Green Approach. Ecotoxicol. Environ. Saf. 2019, 180, 430–438. [CrossRef]spa
dcterms.referencesSrinivasan, S.V.; Rema, T.; Chitra, K.; Sri Balakameswari, K.; Suthanthararajan, R.; Uma Maheswari, B.; Ravindranath, E.; Rajamani, S. Decolourisation of Leather Dye by Ozonation. Desalination 2009, 235, 88–92. [CrossRef]spa
dcterms.referencesAnsari, F.A.; Gupta, S.K.; Nasr, M.; Rawat, I.; Bux, F. Evaluation of Various Cell Drying and Disruption Techniques for Sustainable Metabolite Extractions from Microalgae Grown in Wastewater: A Multivariate Approach. J. Clean. Prod. 2018, 182, 634–643. [CrossRef]spa
dcterms.references. Behera, M.; Dhali, D.; Chityala, S.; Mandal, T.; Bhattacharya, P.; Mandal, D.D. Evaluation of Performance of Planococcus sp. TRC1 an Indigenous Bacterial Isolate Monoculture as Bioremediator for Tannery Effluent. Desalin. Water Treat. 2016, 57, 13213–13224. [CrossRef]spa
dcterms.referencesAjayan, K.V.; Selvaraju, M. Heavy Metal Induced Antioxidant Defense System of Green Microalgae and Its Effective Role in Phycoremediation of Tannery Effluent. Pak. J. Biol. Sci. 2012, 15, 1056–1062. [CrossRef]spa
dcterms.referencesRose, P.; Dunn, K. A High Rate Ponding Unit Operation Linking Treatment of Tannery Effluent and Arthrospira (Spirulina) Biomass Production. 1: Process Development. Biomass Bioenergy 2013, 51, 183–188. [CrossRef]spa
dcterms.referencesArdila, L.; Godoy, R.; Montenegro, L. Sorption Capacity Measurement of Chlorella vulgaris and Scenedesmus acutus to Remove Chromium from Tannery Waste Water. Proc. IOP Conf. Ser. Earth Environ. Sci. 2017, 83, 12031. [CrossRef]spa
dcterms.referencesNagabalaji, V.; Sivasankari, G.; Srinivasan, S.V.; Suthanthararajan, R.; Ravindranath, E. Nutrient removal from synthetic and secondary treated sewage and tannery wastewater through phycoremediation. Environ. Technol. 2019, 40, 784–792. [CrossRef]spa
dcterms.referencesAjayan, K.V.; Harilal, C.C.; Selvaraju, M. Phycoremediation Resultant Lipid Production and Antioxidant Changes in Green Microalgae Chlorella sp. Int. J. Phytoremed. 2018, 20, 1144–1151. [CrossRef]spa
dcterms.referencesSaranya, D.; Shanthakumar, S. Effect of culture conditions on biomass yield of acclimatized microalgae in ozone pre-treated tannery effluent: A simultaneous exploration of bioremediation and lipid accumulation potential. J. Environ. Manag. 2020, 273, 111129. [CrossRef] [PubMed]spa
dcterms.referencesda Fontoura, J.T.; Rolim, G.S.; Mella, B.; Farenzena, M.; Gutterres, M. Defatted Microalgal Biomass as Biosorbent for the Removal of Acid Blue 161 Dye from Tannery Effluent. J. Environ. Chem. Eng. 2017, 5, 5076–5084. [CrossRef]spa
dcterms.referencesSforza, E.; Kumkum, P.; Barbera, E.; Kumar, S. Bioremediation of industrial effluents: How a biochar pretreatment may increase the microalgal growth in tannery wastewater. J. Water Process Eng. 2020, 37, 101431. [CrossRef]spa
dcterms.referencesSalama, E.S.; Kurade, M.B.; Abou-Shanab, R.A.I.; El-Dalatony, M.M.; Yang, I.S.; Min, B.; Jeon, B.H. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew. Sustain. Energy Rev. 2017, 79, 1189–1211. [CrossRef]spa
dcterms.referencesGendy, T.S.; El-Temtamy, S.A. Commercialization potential aspects of microalgae for biofuel production: An overview. Egypt. J. Pet. 2013, 22, 43–51. [CrossRef]spa
dc.identifier.doihttps://doi.org/10.3390/molecules26113222
dc.relation.citationeditionVol. 26, No. 3222 (2021)spa
dc.relation.citationendpage25spa
dc.relation.citationissue3222(2021)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume26spa
dc.relation.citesUrbina-Suarez, N.A.; Machuca-Martínez, F.; Barajas-Solano, A.F. Advanced Oxidation Processes and Biotechnological Alternatives for the Treatment of Tannery Wastewater. Molecules 2021, 26, 3222. https:// doi.org/10.3390/molecules26113222
dc.relation.ispartofjournalMoleculesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalwastewatereng
dc.subject.proposalAOPseng
dc.subject.proposaltanneryeng
dc.subject.proposalmicroalgaeeng
dc.subject.proposalbiological processeng
dc.subject.proposalleather industryeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).