Mostrar el registro sencillo del ítem

dc.contributor.authorNiño, Lilibeth
dc.contributor.authorGelves, German
dc.contributor.authorHernandez, Shannon
dc.date.accessioned2021-10-13T15:38:59Z
dc.date.available2021-10-13T15:38:59Z
dc.date.issued2021-06
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/300
dc.description.abstractPolyphenols are molecules with antioxidant potential for several diseases. In this research, an analysis of polyphenols production costs from Theobroma cacao L suspension cell culture was evaluated. The latter proposing different scenarios based on a large-scale plant production using the SuperPro Designer software. Two strategies for bioprocess improvement were proposed based on information from a traditional suspension cell culture (Strategy I). These improvements are firstly based on adding elicitors (Strategy II) for increasing polyphenol production and secondly, energetic use of cane bagasse and rice bran (Strategy III) by adding a gasifier. Results showed that the percentage of losses decreases from 19 % to only 5.8 % applying a recirculation system in losses lines product regarding Strategy II. Also, adding Methyl Jasmonate (MJ) elicitor increased the Y p / s yield up to 0.08 kg polyphenols/kg glucose. Gasification proposed in Strategy III achieved supplying 37 % of energy requirements using only 1.14 % of bagasse. One essential finding refers to the decreased cost of producing a 100 mg tablet formulated at 50 % of the active substance. Therefore, the latter resulted in 0.23 USD / tablet: promising data compared to 1.0-2.0 USD / tablet corresponding to the average value in the market. Thus, this research demonstrates that the increase of polyphenols by adding elicitors positively influences the operating costs.eng
dc.format.extent13 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherJournal of Engineering Science and Technology
dc.relation.ispartofJournal of Engineering Science and Technology ISSN: 1823-4690, 2021 vol:16 fasc: 3 págs: 2100 - 2113
dc.rightsCC BY-NC-NDeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://jestec.taylors.edu.my/Vol%2016%20issue%203%20June%202021/16_3_18.pdfspa
dc.titleIndustrial-Scale bioprocess simulation of polyphenol production using superpro designereng
dc.typeArtículo de revistaspa
dcterms.referencesSingh, S.; Pandey, S.S.; Shanker, K.; and Kalra, A. (2020). Endophytes enhance the production of root alkaloids ajmalicine and serpentine by modulating the terpenoid indole alkaloid pathway in Catharanthus roseus roots. Journal of Applied Microbiology, 128(4), 1128-1142.spa
dcterms.referencesRafińska, K.; Pomastowski, P.; Wrona, O.; Górecki, R.; and Buszewski, B. (2017). Medicago sativa as a source of secondary metabolites for agriculture and pharmaceutical industry. Phytochemistry Letters, 20, 520-539.spa
dcterms.referencesRojas-Padilla, C.; and Vásquez-Villalobos, V. (2016). Phenolic compounds with antioxidant capacity of the native Andean potato (Solanum tuberosum L.) Huagalina variety in La Libertad-Peru. Scientia Agropecuaria, 7(3), 333-340.spa
dcterms.referencesNova-López, C.J.; Muñoz-Pérez, J.M.; Granger-Serrano, L.F.; Arias-Zabala, M.E.; and Arango-Isaza, R.E. (2017). Expression of recombinant Cry 1Ac protein in potato plant cell suspension culture: Establishment of culture and optimization of biomass and protein production by nitrogen supply. DYNA, 84(201), 34-41.spa
dcterms.referencesLjekočević, M.; Jadranin, M.; Stanković, J.; Popović, B.; Nikićević, N.; Petrović, A.; and Tešević, V. (2019). Phenolic composition and DPPH radical scavenging activity of plum wine produced from three plum cultivars. Journal of the Serbian Chemical Society, 84(2), 141-151.spa
dcterms.referencesSaini, S.S.; Teotia, D.; Gaid, M.; Thakur, A.; Beerhues, L.; and Sircar, D. (2017). Benzaldehyde dehydrogenase-driven phytoalexin biosynthesis in elicitor-treated Pyrus pyrifolia cell cultures. Journal of Plant Physiology, 215, 154-162.spa
dcterms.referencesFlórez, C.; Rojas, L.F.; Londoño, J.; and Atehortúa, L. (2011). Efecto del metil jasmonato sobre la producción de polifenoles totales en cultivos celulares de Theobroma cacao. XIV National Congress of Biotechnology and Bioengineering, Juriquilla, Queretaro, 14, 53spa
dcterms.referencesMed, N.C.; and Rodríguez, M.D. (2019). Polifenoles y vitaminas en la protección del daño genético inducido por metales con potencial cancerígeno. Nutricion Clinica en Medicina, 13(3),129-139spa
dcterms.referencesGarcía, A.Á.; and Carril, E.P. (2011). Metabolismo secundario de plantas. REDUCA (biology), 2(3) 119-145spa
dcterms.referencesPloeg, M.; Aben, K.K.H.; and Kiemeney, L.A. (2009). The present and future burden of urinary bladder cancer in the world. World Journal of Urology, 27(3), 289-293.spa
dcterms.referencesZabala, M.A.; Velásquez, M.J.A.; Cardona, A.M.A.; Flórez, J.M.R.; and Vallejo, C.M. (2009). Estrategias para incrementar la producción de metabolitos secundarios en cultivos de células vegetales. Revista Facultad Nacional de Agronomía-Medellín, 62(1) 4881-4895.spa
dcterms.referencesDmitrović , S.; Škoric, M.; Boljević, J.; Aničić, N.; Božić, D.; Mišić, D.; and Opsenica, D. (2016). Elicitation effects of a synthetic 1, 2, 4, 5-tetraoxane and a 2, 5-diphenylthiophene in shoot cultures of two nepeta species. Journal of the Serbian Chemical Society, 81(9), 999-1012spa
dcterms.referencesJiao, J.; Gai, Q.Y.; Wang, W.; Luo, M.; Zu, Y.G.; Fu, Y.J.; and Ma, W. (2016). Enhanced astragaloside production and transcriptional responses of biosynthetic genes in astragalus membranaceus hairy root cultures by elicitation with methyl jasmonate. Biochemical engineering journal, 105, 339-346.spa
dcterms.referencesCampos-Ramirez, L.; Pérez-Sánchez, A.; Benítez-Legra, A.; and Benítez, I. (2020). Estudio técnico-económico de dos tecnologías de producción de biodiesel a partir de aceite de soya empleando el simulador superpro designer. TecnoLógicas, 23(48), 119-141.spa
dcterms.referencesVillamizar-Jaimes, A.R.V.; and López-Giraldo, L.J. (2017). Cocoa husk source of polyphenol and fiber: simulation of a pilot plant for their extraction. Respuestas, 22(1), 75-83.spa
dcterms.referencesRouf, S.A.; Douglas, P.L.; Moo-Young, M.; and Scharer, J.M. (2001). Computer simulation for large scale bioprocess design. Biochemical Engineering Journal, 8(3), 229-234.spa
dcterms.referencesOntiveros, G.A. (2015). Evaluación de tratamientos para aguas residuales contaminadas con fármacos y productos de higiene personal. Universidad Nacional del Litoral, 213-217.spa
dcterms.referencesVidal, H. R. (2017). Regulación de la producción de taxanos y otros metabolitos secundarios en cultivos de células y órganos vegetales. Doctoral dissertation, Universitat de Barcelona, 47-62.spa
dcterms.referencesGallego, A.M.; Rojas, L.F.; Rodriguez, H.A.; Mora, C.; Atehortúa, L.; Urrea, A.I.; Guiltinan, M.J.; Maximova, S.N.; Gaquerel, E.; Zuluaga, M. and Pabón, N. (2019). Metabolomic profile of cacao cell suspensions growing in blue light / dark conditions with potential in food biotechnology. Plant Cell, Tissue and Organ Culture, 139, 275-294.spa
dcterms.referencesWu, C.H.; Tang, J.; Jin, Z.X.; Wang, M.; Liu, Z.Q.; Huang, T.; and Lian, M.L. (2018). Optimizing co-culture conditions of adventitious roots of echinacea pallida and echinacea purpurea in air-lift bioreactor systems. Biochemical engineering journal, 132, 206-216.spa
dcterms.referencesGarcia, C.; Marelli, J.P.; Motamayor, J.C.; and Villela, C. (2018). Somatic Embryogenesis in Theobroma cacao L. Plant Cell Culture Protocols. Humana Press (4th ed.), New York: Loyola-Vargas V, Ochoa-Alejo N,1815, 227-245.spa
dcterms.referencesVillafuerte, L. (2011). Los excipientes y su funcionalidad en productos farmacéuticos sólidos. Revista mexicana de ciencias farmacéuticas, 42(1), 18-36.spa
dcterms.referencesPetrides, D.; Carmichael, D.; Charles, C.; and Koulouris, A. (2014). Biopharmaceutical Process Optimization with Simulation and Scheduling Tools. Bioengineering 1, 154-187.spa
dcterms.references. Nazario, O.; Ordoñez, E.; Mandujano, Y.; and Arévalo, J. (2018). Polifenoles totales, antocianinas, capacidad antioxidante de granos secos y análisis sensorial del licor de cacao (Theobroma cacao L.) criollo y siete clonesInvestigación y Amazonía, 3(1), 51-59.spa
dc.publisher.placeMalasiaspa
dc.relation.citationeditionVol. 16, No. 3 (2021)spa
dc.relation.citationendpage2113spa
dc.relation.citationissue3 (2021)spa
dc.relation.citationstartpage2100spa
dc.relation.citationvolume16spa
dc.relation.ispartofjournalJournal of Engineering Science and Technologyspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalBioprocess simulationeng
dc.subject.proposalElicitationeng
dc.subject.proposalGasificationeng
dc.subject.proposalPhenolic compoundseng
dc.subject.proposalPlant designeng
dc.subject.proposalSoftwareeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

CC BY-NC-ND
Excepto si se señala otra cosa, la licencia del ítem se describe como CC BY-NC-ND