Mostrar el registro sencillo del ítem

dc.contributor.authorBarajas Solano, andres F
dc.date.accessioned2021-10-04T15:50:26Z
dc.date.available2021-10-04T15:50:26Z
dc.date.issued2021
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/294
dc.description.abstractLas cianobacterias son consideradas como una de las nuevas fuentes biotecnológicas sostenible de varias materias primas para la industria farmacéutica, alimentaria, clínica y energética mundial. Dentro de estos metabolitos, las ficobiliproteinas (proteínas colorantes de color azul y rojo) y los exopolisacaridos resaltan por su amplia demanda. Las cianobacterias son la principal fuente natural de ficobiliproteinas. Este grupo de microorganismos simples es explotado a nivel mundial en diferentes sistemas de producción (abiertos o cerrados). Sin embargo, las cepas que son explotadas industrialmente poseen condiciones abióticas de cultivo (temperatura, radiación solar y ciclo luz:oscuridad) que restringen su localización geográfica a ciertas zonas, por lo cual, no todas las cepas (menos del 10% de la diversidad global) son explotadas. Las cianobacterias termotolerantes poseen la capacidad de sobrevivir en ambientes con alta radiación y temperatura, lo cual les otorga un mayor rango de crecimiento. En los últimos años, el grupo Ambiente y Vida de la Universidad Francisco de Paula Santander ha podido aislar y determinar un grupo de cianobacterias termotolerantes provenientes de termales del departamento con la capacidad de producir altos contenidos de ficocianinas y exopolisacaridos los cuales pueden ser estudiados para su explotación industrial. El presente proyecto tiene como objetivo Desarrollar una bio-plataforma para la producción de colores y metabolitos de alto valor agregado a empleando cianobacterias termotolerantes colombianas. Para lograr lo anterior se proponen las siguientes etapas: (1) Determinar las cepas mayor capacidad de producir fitohormonas y Exopolisacaridos (EPS). (2) Identificar el efecto del Ciclo luz/oscuridad e intensidad lumínica en la producción de fitohormonas y Exopolisacaridos. (3) Determinar el efecto de concentración de macronutrientes en la producción de C-PC y PE. (4) Evaluar el efecto de la concentración de micronutrientes en la síntesis de C-PC y PE. Y (5) Optimizar la concentración de nutrientes para la síntesis y producción de C-PC y PE en cepas de cianobacterias termotolerantes. Se espera que esta iniciativa permita mejorar constantemente la investigación, desarrollo e innovación en la Facultad de Ciencias Agrarias y del Ambiente y finalmente de la Universidad Francisco de Paula Santander.spa
dc.description.sponsorshipMinisterio de Ciencia, Tecnología e Innovación [CO] Mincienciasspa
dc.format.extent48 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Francisco de Paula Santanderspa
dc.rightsUniversidad Francisco de Paula Santander, 2021spa
dc.titleAlgalcolor: bio-platform for the sustainable production of cyanobacterial-based colours and fine chemicalseng
dc.typeInforme de investigaciónspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAjayan, K. V., Selvaraju, M., & Thirugnanamoorthy, K. (2012). Enrichment of chlorophyll and phycobiliproteins in Spirulina platensis by the use of reflector light and nitrogen sources: An in-vitro study. Biomass and bioenergy, 47, 436-441.spa
dcterms.referencesAndersen R.A., Berges J.A., Harrison P.J. Watanabe M.M., 2005, Appendix A—Recipes for Freshwater and Seawater Media In Andersen R.A.(Ed). Algal Culturing Techniques (pp 429-538). Burlington, MA: Elsevier Academic Press.spa
dcterms.referencesAnsari, F. A., Shriwastav, A., Gupta, S. K., Rawat, I., & Bux, F. (2017). Exploration of Microalgae Biorefinery by Optimizing Sequential Extraction of Major Metabolites from Scenedesmus obliquus. Industrial & Engineering Chemistry Research, 56(12), 3407–3412.spa
dcterms.referencesAntelo, Francine S., Anschau, Andréia, Costa, Jorge A. V., & Kalil, Susana J. (2010). Extraction and purification of C-phycocyanin from Spirulina platensis in conventional and integrated aqueous two-phase systems. Journal of the Brazilian Chemical Society, 21(5), 921-926.spa
dcterms.referencesBabu, T. S., Kumar, A., & Varma, A. K. (1991). Effect of light quality on phycobilisome components of the cyanobacterium Spirulina platensis. Plant physiology, 95(2), 492-497.spa
dcterms.referencesBastiaens, L., Van Roy, S., Thomassen, G., & Elst, K. (2017). Biorefinery of algae: Technical and economic considerations. In Microalgae-based biofuels and bioproducts (pp. 327-345). Woodhead Publishing.spa
dcterms.referencesBenedetti, S., Benvenuti, F., Pagliarani, S., Francogli, S., Scoglio, S., & Canestrari, F. (2004). Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life sciences, 75(19), 2353-2362.spa
dcterms.referencesBenedetti, S., Rinalducci, S., Benvenuti, F., Francogli, S., Pagliarani, S., Giorgi, L., Micheloni, M., D’Amici, M., Zolla, L & Canestrari, F. (2006). Purification and characterization of phycocyanin from the blue-green alga Aphanizomenon flos-aquae. Journal of Chromatography B, 833(1), 12-18.spa
dcterms.referencesBennett A., Bogorad, L., 1973, Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell Biol. 58, 419–435.spa
dcterms.referencesBhat, V. B., & Madyastha, K. M. (2000). C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro. Biochemical and biophysical research communications, 275(1), 20-25.spa
dcterms.referencesBrock, T.D. (1978). Thermophilic microorganisms and life at high temperatures. SpringerVerlag, Berlin.spa
dcterms.referencesCastenholz, R.W. (1969). Thermophilic blue green algae and the thermal environment. Bacteriol. Rev. 33: 476504.spa
dcterms.referencesCastro, G. F. P. D. S., Rizzo, R. F., Passos, T. S., Santos, B. N. C. D., Dias, D. D. S., Domingues, J. R., & Araújo, K. G. D. L. (2015). Biomass production by Arthrospira platensis under different culture conditions. Food Science and technology, 35(1), 18-24.spa
dcterms.referencesChallouf, R., Trabelsi, L., Ben Dhieb, R., El Abed, O., Yahia, A., Ghozzi, K., Ammar, J., Omran, H., & Ben Ouada, H. (2011). Evaluation of cytotoxicity and biological activities in extracellular polysaccharides released by cyanobacterium Arthrospira platensis. Brazilian Archives of Biology and Technology, 54(4), 831-838.spa
dcterms.referencesChen, C. Y., Kao, P. C., Tan, C. H., Show, P. L., Cheah, W. Y., Lee, W. L.,Chang, J. S. (2016). Using an innovative pH-stat CO2 feeding strategy to enhance cell growth and C-phycocyanin production from Spirulina platensis. Biochemical Engineering Journal, 112, 78–85.spa
dcterms.referencesChentir, I., Doumandji, A., Ammar, J., Zili, F., Jridi, M., Markou, G., & Ouada, H. B. (2018). Induced change in Arthrospira sp.(Spirulina) intracellular and extracellular metabolites using multifactor stress combination approach. Journal of applied phycology, 30(3), 1563-1574.spa
dcterms.referencesCogne, G., Gros, J. B., & Dussap, C. G. (2003). Identification of a metabolic network structure representative of Arthrospira (spirulina) platensis metabolism. Biotechnology and bioengineering, 84(6), 667-676.spa
dcterms.referencesDasgupta, C. N. (2015). Algae as a source of phycocyanin and other industrially important pigments. In Algal Biorefinery: An Integrated Approach (pp. 253-276). Springer, Cham.spa
dcterms.referencesDe Marsac, N. T., & Cohen-bazire, G. (1977). Molecular composition of cyanobacterial phycobilisomes. Proceedings of the National Academy of Sciences, 74(4), 1635 LP-1639.spa
dcterms.referencesG. (2014). Effect of light intensity on the production of pigments in Nostoc SPP. European Journal of Biology and Medical Science Research, 2(1), 23-36.spa
dcterms.referencesDe Oliveira, C. A., Oliveira, W. C., Ribeiro, S. M. R., Stringheta, P. C., & Nascimento, A. G. (2014). Effect of light intensity on the production of pigments in Nostoc SPP. European Journal of Biology and Medical Science Research, 2(1), 23-36.spa
dcterms.referencesDel Rio-Chanona, E. A., Zhang, D., Xie, Y., Manirafasha, E., & Jing, K. (2015). Dynamic simulation and optimization for Arthrospira platensis growth and C-phycocyanin production. Industrial & Engineering Chemistry Research, 54(43), 10606-10614.spa
dcterms.referencesDejsungkranont, M., Chisti, Y., & Sirisansaneeyakul, S. (2017). Optimization of production of C-phycocyanin and extracellular polymeric substances by Arthrospira sp. Bioprocess and Biosystems Engineering, 40(8), 1173–1188.spa
dcterms.referencesDey, S., & Rathod, V. K. (2013). Ultrasound assisted extraction of β-carotene from Spirulina platensis. Ultrasonics Sonochemistry, 20(1), 271-276.spa
dcterms.referencesDoke, J. M. (2005). An improved and efficient method for the extraction of phycocyanin from Spirulina sp. International Journal of Food Engineering, 1(5).spa
dcterms.referencesEriksen, N. T. (2008). Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Applied microbiology and biotechnology, 80(1), 1-14.spa
dcterms.referencesFatma, T. (2009). Screening of cyanobacteria for phycobiliproteins and effect of different environmental stress on its yield. Bulletin of environmental contamination and toxicology, 83(4), 509.spa
dcterms.referencesFernández-Rojas, B., Hernández-Juárez, J., & Pedraza-Chaverri, J. (2014). Nutraceutical properties of phycocyanin. Journal of Functional Foods, 11(C), 375–392.spa
dcterms.referencesFinore I, Lama L, Poli A, Donato P, and Nicolaus B. Biotechnology Implications of Extremophiles as Life Pioneers and Wellspring of Valuable Biomolecules. In V.C. Kalia (ed.), Microbial Factories, 2015.spa
dcterms.referencesFuenmayor, G., Jonte, L., Rosales-loaiza, N., Morales, E., 2009. Effect of salinity and nutrient concentration on growth and biochemical composition of the authentic cyanobacterium Oscillatoria sp. MOF-06. Ciencia 17, 50–57.spa
dcterms.referencesGhozzi K, Zemzem M, Dhiab RB, Challouf R, Yahia R, Omrane H, Ouada HB. Screening of thermophilic microalgae and cyanobacteria from Tunisian geothermal sources. Journal of Arid Environments 97 (2013) 1417.spa
dcterms.referencesGifuni, I., Pollio, A., Safi, C., Marzocchella, A., & Olivieri, G. (2018). Current Bottlenecks and Challenges of the Microalgal Biorefinery. Trends in biotechnology.spa
dcterms.referencesGris, B., Sforza, E., Morosinotto, T., Bertucco, A., & La Rocca, N. (2017). Influence of light and temperature on growth and high-value molecules productivity from Cyanobacterium aponinum. Journal of applied phycology, 29(4), 1781-1790.spa
dcterms.referencesGuedes, A., Katkam, N. G., Varela, J., & Xavier Malcata, F. (2014). Photobioreactors for cyanobacterial culturing. Cyanobacteria: An Economic Perspective, 270-292.spa
dcterms.referencesHayashi, T., Hayashi, K., Maeda, M., & Kojima, I. (1996). Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. Journal of natural products, 59(1), 83-87.spa
dcterms.referencesHifney, A. F., Issa, A. A., & Fawzy, M. A. (2013). Abiotic stress induced production of β-carotene, allophycocyanin and total lipids in Spirulina sp. Journal of Biology and Earth Sciences, 3(1), 54-64spa
dcterms.referencesIonescu D, Hindiyeh M, Malkawi H, Oren A (2010). Biogeography of thermophilic cyanobacteria: insights from the Zerka Ma'in hot springs (Jordan). FEMS Microbiol Ecol 72(1):103113.spa
dcterms.referencesLee, S. H., Lee, J. E., Kim, Y., & Lee, S. Y. (2016). The production of high purity phycocyanin by Spirulina platensis using light-emitting diodes based two-stage cultivation. Applied biochemistry and biotechnology, 178(2), 382-395.spa
dcterms.referencesLee, NK., Oh, HM., Kim, HS., & Ahn, CY. (2017). Higher production of C-phycocyanin by nitrogen-free (diazotrophic) cultivation of Nostoc sp. NK and simplified extraction by dark-cold shock. Bioresource Technology, 227, 164–170.spa
dcterms.referencesLemus, N., Guevara, M., Lodeiros, C., Vásquez, A., (2013). Crecimiento y composición bioquímica de Limnothrix sp . a diferentes salinidades y concentraciones de nitrato. Rev. Colomb. Biotecnol. XV, 159–166.spa
dcterms.referencesİlter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70(August 2017), 78–88.spa
dcterms.referencesMoraes, C. C., Sala, Luisa, Cerveira, G. P., & Kalil, S. J.. (2011). C-phycocyanin extraction from Spirulina platensis wet biomass. Brazilian Journal of Chemical Engineering, 28(1), 45-49.spa
dcterms.referencesKannaujiya, V. K., Kumar, D., Pathak, J., & Sinha, R. P. (2019). Phycobiliproteins and Their Commercial Significance. In Cyanobacteria (pp. 207-216). Academic Press.spa
dcterms.referencesKetzer, F., Skarka, J., & Rösch, C. (2018). Critical review of microalgae LCA studies for bioenergy production. BioEnergy Research, 11(1), 95-105.spa
dcterms.referencesKhatoon, H., Leong, L. K., Rahman, N. A., Mian, S., Begum, H., Banerjee, S., & Endut, A. (2018). Effects of different light source and media on growth and production of phycobiliprotein from freshwater cyanobacteria. Bioresource technology, 249, 652-658.spa
dcterms.referencesKhattar, J.I.S., Kaur, S., Kaushal, S., Singh, Y., Singh, D. P., Rana, S., & Gulati, A. (2015). Hyperproduction of phycobiliproteins by the cyanobacterium Anabaena fertilissima PUPCCC 410.5 under optimized culture conditions. Algal Research, 12, 463-469.spa
dcterms.referencesKhazi, M. I., Demirel, Z., & Dalay, M. C. (2018). Evaluation of growth and phycobiliprotein composition of cyanobacteria isolates cultivated in different nitrogen sources. Journal of applied phycology, 1-11.spa
dcterms.referencesKim, N.N., Shin, H. S., Park, H. G., Lee, J., Kil, G. S., & Choi, C. Y. (2014). Profiles of photosynthetic pigment accumulation and expression of photosynthesis-related genes in the marine cyanobacteria Synechococcus sp.: Effects of LED wavelengths. Biotechnology and bioprocess engineering, 19(2), 250-256.spa
dcterms.referencesKumar, D., Dhar, D.W., Pabbi, S., Kumar, N., Walia, S., 2014. Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540). Indian J. Plant Physiol. 19, 184–188.spa
dcterms.referencesLamela, T., & Márquez-Rocha, F. J. (2000). Phycocyanin production in seawater culture of Arthrospira maxima. Ciencias marinas, 26(4), 607-619.spa
dcterms.referencesMa, R., Lu, F., Bi, Y., & Hu, Z. (2015). Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing. Biotechnology letters, 37(8), 1663-1669.spa
dcterms.referencesMajdoub, H., Mansour, M. B., Chaubet, F., Roudesli, M. S., & Maaroufi, R. M. (2009). Anticoagulant activity of a sulfated polysaccharide from the green alga Arthrospira platensis. Biochimica et Biophysica Acta (BBA)-General Subjects, 1790(10), 1377-1381.spa
dcterms.referencesMackenzie Calderon R. Ecology of Hot spring microbial mats: Diversity, microheterogeneity and biogeography. Doctoral Thesis, (2014) Universitat Autonoma de Barcelona.spa
dcterms.referencesManirafasha, E., Ndikubwimana, T., Zeng, X., Lu, Y., Jing, K., (2016). Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochem. Eng. J. 109, 282–296.spa
dcterms.referencesMartelli, G., Folli, C., Visai, L., Daglia, M., Ferrari, D., 2014. Thermal stability improvement of blue colorant C-Phycocyanin from Spirulina platensis for food industry ap- plications. Process Biochem. 49, 154–159.spa
dcterms.referencesMishra, S. K., Shrivastav, A., Maurya, R. R., Patidar, S. K., Haldar, S., & Mishra, S. (2012). Effect of light quality on the C-phycoerythrin production in marine cyanobacteria Pseudanabaena sp. isolated from Gujarat coast, India. Protein Expression and Purification, 81(1), 5-10.spa
dcterms.referencesMoro I, Rascio N, La Rocca N, Sciuto K, Albertano P, Bruno L. Andreoli C. (2010). Polyphasic characterization of a thermotolerant filamentous cyanobacterium isolated from the Euganean thermal muds (Padua, Italy), European Journal of Phycology, 45:2, 143154.spa
dcterms.referencesOjit, S. K., Indrama, T., Gunapati, O., Avijeet, S. O., Subhalaxmi, S. A., Silvia, C., & Tiwari, O. N. (2015). The response of phycobiliproteins to light qualities in Anabaena circinalis. J Appl Biol Biotechnol, 3, 1-6.spa
dcterms.referencesOlvera-Ramı́rez, R., Coria-Cedillo, M., Cañizares-Villanueva, R. O., Martı́nez-Jerónimo, F., Ponce-Noyola, T., & Rı́os-Leal, E. (2000). Growth evaluation and bioproducts characterization of Calothrix sp. Bioresource technology, 72(2), 121-124.spa
dcterms.referencesPaliwal, C., Mitra, M., Bhayani, K., Bharadwaj, S. V., Ghosh, T., Dubey, S., & Mishra, S. (2017). Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology, 244, 1216-1226.spa
dcterms.referencesPagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A., & Vasconcelos, V. (2019). Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology advances. IN PRESS.spa
dcterms.referencesPatil, G., & Raghavarao, K. S. M. S. (2007). Aqueous two phase extraction for purification of C-phycocyanin. Biochemical Engineering Journal, 34(2), 156-164.spa
dcterms.referencesRimbau, V., Camins, A., Pubill, D., Sureda, F. X., Romay, C., González, R., & Pallàs, M. (2001). C-phycocyanin protects cerebellar granule cells from low potassium/serum deprivation-induced apoptosis. Naunyn-Schmiedeberg's archives of pharmacology, 364(2), 96-104.spa
dcterms.referencesReysenbach A. L. and Cady S. L. 2001. Microbiology of ancient and modern hydrothermal systems. Trends Microbiol. 9:7986.spa
dcterms.referencesSantiago-Santos, M. C., Ponce-Noyola, T., Olvera-Ramı́rez, R., Ortega-López, J., & Cañizares-Villanueva, R. O. (2004). Extraction and purification of phycocyanin from Calothrix sp. Process biochemistry, 39(12), 2047-2052.spa
dcterms.referencesSamsonoff, W. A., & MacColl, R. (2001). Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat. Archives of microbiology, 176(6), 400-405.spa
dcterms.referencesSchulze, P. S., Barreira, L. A., Pereira, H. G., Perales, J. A., & Varela, J. C. (2014). Light emitting diodes (LEDs) applied to microalgal production. Trends in biotechnology, 32(8), 422-430.spa
dcterms.referencesSekar, S., Chandramohan, M., 2008. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J. Appl. Phycol. 20, 113–136.spa
dcterms.referencesSharma, G., Kumar, M., Ali, M. I., & Jasuja, N. D. (2014). Effect of carbon content, salinity and pH on Spirulina platensis for phycocyanin, allophycocyanin and phycoerythrin accumulation. J Microb Biochem Technol, 6(4), 202-206.spa
dcterms.referencesSingh, N. K., Parmar, A., & Madamwar, D. (2009). Optimization of medium components for increased production of C-phycocyanin from Phormidium ceylanicum and its purification by single step process. Bioresource technology, 100(4), 1663-1669.spa
dcterms.referencesSingh, S., Kant, C., Yadav, R. K., Reddy, Y. P., & Abraham, G. (2019). Cyanobacterial Exopolysaccharides: Composition, Biosynthesis, and Biotechnological Applications. In Cyanobacteria (pp. 347-358). Academic Press.spa
dcterms.referencesSivasankari, S., Naganandhini, N., & Ravindran, D. (2014). Comparison of different extraction methods for phycocyanin extraction and yield from Spirulina platensis. Int. J. Curr. Microbiol. Appl. Sci, 3(8), 904-909.spa
dcterms.referencesSoni, B., Trivedi, U., & Madamwar, D. (2008). A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresource Technology, 99(1), 188-194.spa
dcterms.referencesTiwari, O. N., Devi, W. I., Silvia, C., Devi, A. T., Oinam, G., Singh, O. A., ... & Shamjetshabam, M. (2015). Modulation of phycobiliprotein production in Nostoc muscorum through culture manipulation. Journal of Applied Biology & Biotechnology Vol, 3(04), 011-016.spa
dcterms.referencesTrabelsi, L., M’sakni, N. H., Ouada, H. B., Bacha, H., & Roudesli, S. (2009a). Partial characterization of extracellular polysaccharides produced by cyanobacterium Arthrospira platensis. Biotechnology and Bioprocess Engineering, 14(1), 27-31.spa
dcterms.referencesTrabelsi, L., Ouada, H. B., Bacha, H., & Ghoul, M. (2009b). Combined effect of temperature and light intensity on growth and extracellular polymeric substance production by the cyanobacterium Arthrospira platensis. Journal of applied phycology, 21(4), 405-412.spa
dcterms.referencesÜrek, R. Ö., & Tarhan, L. (2012). The relationship between the antioxidant system and phycocyanin production in Spirulina maxima with respect to nitrate concentration. Turkish Journal of Botany, 36(4), 369-377.spa
dcterms.referencesVan Eykelenburg, C. (1977). On the morphology and ultrastructure of the cell wall of Spirulina platensis. Antonie van leeuwenhoek, 43(2), 89-99.spa
dcterms.referencesViskari, P. J., & Colyer, C. L. (2003). Rapid extraction of phycobiliproteins from cultured cyanobacteria samples. Analytical Biochemistry, 319(2), 263-271.spa
dcterms.referencesWyman, M., 1992. An in vivo method for the estimation of phycoerythrin concentrations in marine cyanobacteria. Limnol. Ocean. 37, 1300–1306.spa
dcterms.referencesWu, H.L., Wang, G.H., Xiang, W.Z., Li, T., He, H., (2016). Stability and antioxidant activity of food grade phycocyanin isolated from Spirulina platensis. Int. J. Food Prop. 19, 10942912.spa
dcterms.referencesXie, Y., Jin, Y., Zeng, X., Chen, J., Lu, Y., & Jing, K. (2015). Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation. Bioresource technology, 180, 281-287.spa
dc.contributor.corporatenameUniversidad Francisco de Paula Santander (Cúcuta, Colombia)spa
dc.contributor.researchgroupAmbiente y Vidaspa
dc.coverage.projectdates2021-08-25/2022-08-25spa
dc.description.funder1Tener en cuenta que FINU solo financia el personal relacionado con encuestadores, auxiliares de campo, tabulador y transcriptor/digitador de documentos/ entrevistas, entrevistadores. El personal investigador que participa en el desarrollo del proyecto, se debe valorar como recursos de contrapartida en especie. 2 Adquisición o arrendamiento de herramientas y equipos. 3 El monto máximo que se aprueba por papelería es de 1/2 SMMLV Colombia 4 Servicios Técnicos: Incluye exámenes, análisis y pruebas de laboratorio, procesamiento de materias primas, análisis estadísticos, servicios de reprografía, mantenimiento y construcción de equipos requeridos para investigación. 5 Documentación y bibliografía 6 En modalidad de ponencia o asesoría técnica externa relacionada con el desarrollo del proyecto. Solo se financia la participación como ponente hasta en un evento nacional y uno internacional. 7 Se debe especificar la fuente de contrapartida. En el caso de existir más de una fuente de contrapartida se debe adicionar columnas al lado derecho especificando cada una de ellas. Los aportes de contrapartida en efectivo y/o especie deben estar soportados con una carta de compromiso o Certificado de Disponibilidad Presupuestal según corresponda.spa
dc.description.methodsMixtaspa
dc.description.researchareaBiotecnologíaspa
dc.publisher.placeCúcutaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.agrovocCianobacterias
dc.subject.agrovocFicobiliproteinas
dc.subject.proposalOscillatoria spspa
dc.subject.proposalFicocianinasspa
dc.subject.proposalCarbohidratosspa
dc.subject.proposalDesarrollo sosteniblespa
dc.type.coarhttp://purl.org/coar/resource_type/c_18wsspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/otherspa
dc.type.redcolhttps://purl.org/redcol/resource_type/PIDspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardcost$25’000.000spa
oaire.awardtotalcost$ 350’982.038spa
oaire.funderidentifier.localFINU 001-2021
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación [CO] Mincienciasspa
oaire.fundernameUniversidad Francisco de Paula Santanderspa
oaire.fundingstreamPrograma Jóvenes Investigadoresspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem