Mostrar el registro sencillo del ítem
Algalcolor: bio-platform for the sustainable production of cyanobacterial-based colours and fine chemicals
dc.contributor.author | Barajas Solano, andres F | |
dc.date.accessioned | 2021-10-04T15:50:26Z | |
dc.date.available | 2021-10-04T15:50:26Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/294 | |
dc.description.abstract | Las cianobacterias son consideradas como una de las nuevas fuentes biotecnológicas sostenible de varias materias primas para la industria farmacéutica, alimentaria, clínica y energética mundial. Dentro de estos metabolitos, las ficobiliproteinas (proteínas colorantes de color azul y rojo) y los exopolisacaridos resaltan por su amplia demanda. Las cianobacterias son la principal fuente natural de ficobiliproteinas. Este grupo de microorganismos simples es explotado a nivel mundial en diferentes sistemas de producción (abiertos o cerrados). Sin embargo, las cepas que son explotadas industrialmente poseen condiciones abióticas de cultivo (temperatura, radiación solar y ciclo luz:oscuridad) que restringen su localización geográfica a ciertas zonas, por lo cual, no todas las cepas (menos del 10% de la diversidad global) son explotadas. Las cianobacterias termotolerantes poseen la capacidad de sobrevivir en ambientes con alta radiación y temperatura, lo cual les otorga un mayor rango de crecimiento. En los últimos años, el grupo Ambiente y Vida de la Universidad Francisco de Paula Santander ha podido aislar y determinar un grupo de cianobacterias termotolerantes provenientes de termales del departamento con la capacidad de producir altos contenidos de ficocianinas y exopolisacaridos los cuales pueden ser estudiados para su explotación industrial. El presente proyecto tiene como objetivo Desarrollar una bio-plataforma para la producción de colores y metabolitos de alto valor agregado a empleando cianobacterias termotolerantes colombianas. Para lograr lo anterior se proponen las siguientes etapas: (1) Determinar las cepas mayor capacidad de producir fitohormonas y Exopolisacaridos (EPS). (2) Identificar el efecto del Ciclo luz/oscuridad e intensidad lumínica en la producción de fitohormonas y Exopolisacaridos. (3) Determinar el efecto de concentración de macronutrientes en la producción de C-PC y PE. (4) Evaluar el efecto de la concentración de micronutrientes en la síntesis de C-PC y PE. Y (5) Optimizar la concentración de nutrientes para la síntesis y producción de C-PC y PE en cepas de cianobacterias termotolerantes. Se espera que esta iniciativa permita mejorar constantemente la investigación, desarrollo e innovación en la Facultad de Ciencias Agrarias y del Ambiente y finalmente de la Universidad Francisco de Paula Santander. | spa |
dc.description.sponsorship | Ministerio de Ciencia, Tecnología e Innovación [CO] Minciencias | spa |
dc.format.extent | 48 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Francisco de Paula Santander | spa |
dc.rights | Universidad Francisco de Paula Santander, 2021 | spa |
dc.title | Algalcolor: bio-platform for the sustainable production of cyanobacterial-based colours and fine chemicals | eng |
dc.type | Informe de investigación | spa |
dcterms.audience | Estudiantes, Profesores, Comunidad científica colombiana | spa |
dcterms.references | Ajayan, K. V., Selvaraju, M., & Thirugnanamoorthy, K. (2012). Enrichment of chlorophyll and phycobiliproteins in Spirulina platensis by the use of reflector light and nitrogen sources: An in-vitro study. Biomass and bioenergy, 47, 436-441. | spa |
dcterms.references | Andersen R.A., Berges J.A., Harrison P.J. Watanabe M.M., 2005, Appendix A—Recipes for Freshwater and Seawater Media In Andersen R.A.(Ed). Algal Culturing Techniques (pp 429-538). Burlington, MA: Elsevier Academic Press. | spa |
dcterms.references | Ansari, F. A., Shriwastav, A., Gupta, S. K., Rawat, I., & Bux, F. (2017). Exploration of Microalgae Biorefinery by Optimizing Sequential Extraction of Major Metabolites from Scenedesmus obliquus. Industrial & Engineering Chemistry Research, 56(12), 3407–3412. | spa |
dcterms.references | Antelo, Francine S., Anschau, Andréia, Costa, Jorge A. V., & Kalil, Susana J. (2010). Extraction and purification of C-phycocyanin from Spirulina platensis in conventional and integrated aqueous two-phase systems. Journal of the Brazilian Chemical Society, 21(5), 921-926. | spa |
dcterms.references | Babu, T. S., Kumar, A., & Varma, A. K. (1991). Effect of light quality on phycobilisome components of the cyanobacterium Spirulina platensis. Plant physiology, 95(2), 492-497. | spa |
dcterms.references | Bastiaens, L., Van Roy, S., Thomassen, G., & Elst, K. (2017). Biorefinery of algae: Technical and economic considerations. In Microalgae-based biofuels and bioproducts (pp. 327-345). Woodhead Publishing. | spa |
dcterms.references | Benedetti, S., Benvenuti, F., Pagliarani, S., Francogli, S., Scoglio, S., & Canestrari, F. (2004). Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life sciences, 75(19), 2353-2362. | spa |
dcterms.references | Benedetti, S., Rinalducci, S., Benvenuti, F., Francogli, S., Pagliarani, S., Giorgi, L., Micheloni, M., D’Amici, M., Zolla, L & Canestrari, F. (2006). Purification and characterization of phycocyanin from the blue-green alga Aphanizomenon flos-aquae. Journal of Chromatography B, 833(1), 12-18. | spa |
dcterms.references | Bennett A., Bogorad, L., 1973, Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell Biol. 58, 419–435. | spa |
dcterms.references | Bhat, V. B., & Madyastha, K. M. (2000). C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro. Biochemical and biophysical research communications, 275(1), 20-25. | spa |
dcterms.references | Brock, T.D. (1978). Thermophilic microorganisms and life at high temperatures. SpringerVerlag, Berlin. | spa |
dcterms.references | Castenholz, R.W. (1969). Thermophilic blue green algae and the thermal environment. Bacteriol. Rev. 33: 476504. | spa |
dcterms.references | Castro, G. F. P. D. S., Rizzo, R. F., Passos, T. S., Santos, B. N. C. D., Dias, D. D. S., Domingues, J. R., & Araújo, K. G. D. L. (2015). Biomass production by Arthrospira platensis under different culture conditions. Food Science and technology, 35(1), 18-24. | spa |
dcterms.references | Challouf, R., Trabelsi, L., Ben Dhieb, R., El Abed, O., Yahia, A., Ghozzi, K., Ammar, J., Omran, H., & Ben Ouada, H. (2011). Evaluation of cytotoxicity and biological activities in extracellular polysaccharides released by cyanobacterium Arthrospira platensis. Brazilian Archives of Biology and Technology, 54(4), 831-838. | spa |
dcterms.references | Chen, C. Y., Kao, P. C., Tan, C. H., Show, P. L., Cheah, W. Y., Lee, W. L.,Chang, J. S. (2016). Using an innovative pH-stat CO2 feeding strategy to enhance cell growth and C-phycocyanin production from Spirulina platensis. Biochemical Engineering Journal, 112, 78–85. | spa |
dcterms.references | Chentir, I., Doumandji, A., Ammar, J., Zili, F., Jridi, M., Markou, G., & Ouada, H. B. (2018). Induced change in Arthrospira sp.(Spirulina) intracellular and extracellular metabolites using multifactor stress combination approach. Journal of applied phycology, 30(3), 1563-1574. | spa |
dcterms.references | Cogne, G., Gros, J. B., & Dussap, C. G. (2003). Identification of a metabolic network structure representative of Arthrospira (spirulina) platensis metabolism. Biotechnology and bioengineering, 84(6), 667-676. | spa |
dcterms.references | Dasgupta, C. N. (2015). Algae as a source of phycocyanin and other industrially important pigments. In Algal Biorefinery: An Integrated Approach (pp. 253-276). Springer, Cham. | spa |
dcterms.references | De Marsac, N. T., & Cohen-bazire, G. (1977). Molecular composition of cyanobacterial phycobilisomes. Proceedings of the National Academy of Sciences, 74(4), 1635 LP-1639. | spa |
dcterms.references | G. (2014). Effect of light intensity on the production of pigments in Nostoc SPP. European Journal of Biology and Medical Science Research, 2(1), 23-36. | spa |
dcterms.references | De Oliveira, C. A., Oliveira, W. C., Ribeiro, S. M. R., Stringheta, P. C., & Nascimento, A. G. (2014). Effect of light intensity on the production of pigments in Nostoc SPP. European Journal of Biology and Medical Science Research, 2(1), 23-36. | spa |
dcterms.references | Del Rio-Chanona, E. A., Zhang, D., Xie, Y., Manirafasha, E., & Jing, K. (2015). Dynamic simulation and optimization for Arthrospira platensis growth and C-phycocyanin production. Industrial & Engineering Chemistry Research, 54(43), 10606-10614. | spa |
dcterms.references | Dejsungkranont, M., Chisti, Y., & Sirisansaneeyakul, S. (2017). Optimization of production of C-phycocyanin and extracellular polymeric substances by Arthrospira sp. Bioprocess and Biosystems Engineering, 40(8), 1173–1188. | spa |
dcterms.references | Dey, S., & Rathod, V. K. (2013). Ultrasound assisted extraction of β-carotene from Spirulina platensis. Ultrasonics Sonochemistry, 20(1), 271-276. | spa |
dcterms.references | Doke, J. M. (2005). An improved and efficient method for the extraction of phycocyanin from Spirulina sp. International Journal of Food Engineering, 1(5). | spa |
dcterms.references | Eriksen, N. T. (2008). Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Applied microbiology and biotechnology, 80(1), 1-14. | spa |
dcterms.references | Fatma, T. (2009). Screening of cyanobacteria for phycobiliproteins and effect of different environmental stress on its yield. Bulletin of environmental contamination and toxicology, 83(4), 509. | spa |
dcterms.references | Fernández-Rojas, B., Hernández-Juárez, J., & Pedraza-Chaverri, J. (2014). Nutraceutical properties of phycocyanin. Journal of Functional Foods, 11(C), 375–392. | spa |
dcterms.references | Finore I, Lama L, Poli A, Donato P, and Nicolaus B. Biotechnology Implications of Extremophiles as Life Pioneers and Wellspring of Valuable Biomolecules. In V.C. Kalia (ed.), Microbial Factories, 2015. | spa |
dcterms.references | Fuenmayor, G., Jonte, L., Rosales-loaiza, N., Morales, E., 2009. Effect of salinity and nutrient concentration on growth and biochemical composition of the authentic cyanobacterium Oscillatoria sp. MOF-06. Ciencia 17, 50–57. | spa |
dcterms.references | Ghozzi K, Zemzem M, Dhiab RB, Challouf R, Yahia R, Omrane H, Ouada HB. Screening of thermophilic microalgae and cyanobacteria from Tunisian geothermal sources. Journal of Arid Environments 97 (2013) 1417. | spa |
dcterms.references | Gifuni, I., Pollio, A., Safi, C., Marzocchella, A., & Olivieri, G. (2018). Current Bottlenecks and Challenges of the Microalgal Biorefinery. Trends in biotechnology. | spa |
dcterms.references | Gris, B., Sforza, E., Morosinotto, T., Bertucco, A., & La Rocca, N. (2017). Influence of light and temperature on growth and high-value molecules productivity from Cyanobacterium aponinum. Journal of applied phycology, 29(4), 1781-1790. | spa |
dcterms.references | Guedes, A., Katkam, N. G., Varela, J., & Xavier Malcata, F. (2014). Photobioreactors for cyanobacterial culturing. Cyanobacteria: An Economic Perspective, 270-292. | spa |
dcterms.references | Hayashi, T., Hayashi, K., Maeda, M., & Kojima, I. (1996). Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. Journal of natural products, 59(1), 83-87. | spa |
dcterms.references | Hifney, A. F., Issa, A. A., & Fawzy, M. A. (2013). Abiotic stress induced production of β-carotene, allophycocyanin and total lipids in Spirulina sp. Journal of Biology and Earth Sciences, 3(1), 54-64 | spa |
dcterms.references | Ionescu D, Hindiyeh M, Malkawi H, Oren A (2010). Biogeography of thermophilic cyanobacteria: insights from the Zerka Ma'in hot springs (Jordan). FEMS Microbiol Ecol 72(1):103113. | spa |
dcterms.references | Lee, S. H., Lee, J. E., Kim, Y., & Lee, S. Y. (2016). The production of high purity phycocyanin by Spirulina platensis using light-emitting diodes based two-stage cultivation. Applied biochemistry and biotechnology, 178(2), 382-395. | spa |
dcterms.references | Lee, NK., Oh, HM., Kim, HS., & Ahn, CY. (2017). Higher production of C-phycocyanin by nitrogen-free (diazotrophic) cultivation of Nostoc sp. NK and simplified extraction by dark-cold shock. Bioresource Technology, 227, 164–170. | spa |
dcterms.references | Lemus, N., Guevara, M., Lodeiros, C., Vásquez, A., (2013). Crecimiento y composición bioquímica de Limnothrix sp . a diferentes salinidades y concentraciones de nitrato. Rev. Colomb. Biotecnol. XV, 159–166. | spa |
dcterms.references | İlter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70(August 2017), 78–88. | spa |
dcterms.references | Moraes, C. C., Sala, Luisa, Cerveira, G. P., & Kalil, S. J.. (2011). C-phycocyanin extraction from Spirulina platensis wet biomass. Brazilian Journal of Chemical Engineering, 28(1), 45-49. | spa |
dcterms.references | Kannaujiya, V. K., Kumar, D., Pathak, J., & Sinha, R. P. (2019). Phycobiliproteins and Their Commercial Significance. In Cyanobacteria (pp. 207-216). Academic Press. | spa |
dcterms.references | Ketzer, F., Skarka, J., & Rösch, C. (2018). Critical review of microalgae LCA studies for bioenergy production. BioEnergy Research, 11(1), 95-105. | spa |
dcterms.references | Khatoon, H., Leong, L. K., Rahman, N. A., Mian, S., Begum, H., Banerjee, S., & Endut, A. (2018). Effects of different light source and media on growth and production of phycobiliprotein from freshwater cyanobacteria. Bioresource technology, 249, 652-658. | spa |
dcterms.references | Khattar, J.I.S., Kaur, S., Kaushal, S., Singh, Y., Singh, D. P., Rana, S., & Gulati, A. (2015). Hyperproduction of phycobiliproteins by the cyanobacterium Anabaena fertilissima PUPCCC 410.5 under optimized culture conditions. Algal Research, 12, 463-469. | spa |
dcterms.references | Khazi, M. I., Demirel, Z., & Dalay, M. C. (2018). Evaluation of growth and phycobiliprotein composition of cyanobacteria isolates cultivated in different nitrogen sources. Journal of applied phycology, 1-11. | spa |
dcterms.references | Kim, N.N., Shin, H. S., Park, H. G., Lee, J., Kil, G. S., & Choi, C. Y. (2014). Profiles of photosynthetic pigment accumulation and expression of photosynthesis-related genes in the marine cyanobacteria Synechococcus sp.: Effects of LED wavelengths. Biotechnology and bioprocess engineering, 19(2), 250-256. | spa |
dcterms.references | Kumar, D., Dhar, D.W., Pabbi, S., Kumar, N., Walia, S., 2014. Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540). Indian J. Plant Physiol. 19, 184–188. | spa |
dcterms.references | Lamela, T., & Márquez-Rocha, F. J. (2000). Phycocyanin production in seawater culture of Arthrospira maxima. Ciencias marinas, 26(4), 607-619. | spa |
dcterms.references | Ma, R., Lu, F., Bi, Y., & Hu, Z. (2015). Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing. Biotechnology letters, 37(8), 1663-1669. | spa |
dcterms.references | Majdoub, H., Mansour, M. B., Chaubet, F., Roudesli, M. S., & Maaroufi, R. M. (2009). Anticoagulant activity of a sulfated polysaccharide from the green alga Arthrospira platensis. Biochimica et Biophysica Acta (BBA)-General Subjects, 1790(10), 1377-1381. | spa |
dcterms.references | Mackenzie Calderon R. Ecology of Hot spring microbial mats: Diversity, microheterogeneity and biogeography. Doctoral Thesis, (2014) Universitat Autonoma de Barcelona. | spa |
dcterms.references | Manirafasha, E., Ndikubwimana, T., Zeng, X., Lu, Y., Jing, K., (2016). Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochem. Eng. J. 109, 282–296. | spa |
dcterms.references | Martelli, G., Folli, C., Visai, L., Daglia, M., Ferrari, D., 2014. Thermal stability improvement of blue colorant C-Phycocyanin from Spirulina platensis for food industry ap- plications. Process Biochem. 49, 154–159. | spa |
dcterms.references | Mishra, S. K., Shrivastav, A., Maurya, R. R., Patidar, S. K., Haldar, S., & Mishra, S. (2012). Effect of light quality on the C-phycoerythrin production in marine cyanobacteria Pseudanabaena sp. isolated from Gujarat coast, India. Protein Expression and Purification, 81(1), 5-10. | spa |
dcterms.references | Moro I, Rascio N, La Rocca N, Sciuto K, Albertano P, Bruno L. Andreoli C. (2010). Polyphasic characterization of a thermotolerant filamentous cyanobacterium isolated from the Euganean thermal muds (Padua, Italy), European Journal of Phycology, 45:2, 143154. | spa |
dcterms.references | Ojit, S. K., Indrama, T., Gunapati, O., Avijeet, S. O., Subhalaxmi, S. A., Silvia, C., & Tiwari, O. N. (2015). The response of phycobiliproteins to light qualities in Anabaena circinalis. J Appl Biol Biotechnol, 3, 1-6. | spa |
dcterms.references | Olvera-Ramı́rez, R., Coria-Cedillo, M., Cañizares-Villanueva, R. O., Martı́nez-Jerónimo, F., Ponce-Noyola, T., & Rı́os-Leal, E. (2000). Growth evaluation and bioproducts characterization of Calothrix sp. Bioresource technology, 72(2), 121-124. | spa |
dcterms.references | Paliwal, C., Mitra, M., Bhayani, K., Bharadwaj, S. V., Ghosh, T., Dubey, S., & Mishra, S. (2017). Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology, 244, 1216-1226. | spa |
dcterms.references | Pagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A., & Vasconcelos, V. (2019). Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology advances. IN PRESS. | spa |
dcterms.references | Patil, G., & Raghavarao, K. S. M. S. (2007). Aqueous two phase extraction for purification of C-phycocyanin. Biochemical Engineering Journal, 34(2), 156-164. | spa |
dcterms.references | Rimbau, V., Camins, A., Pubill, D., Sureda, F. X., Romay, C., González, R., & Pallàs, M. (2001). C-phycocyanin protects cerebellar granule cells from low potassium/serum deprivation-induced apoptosis. Naunyn-Schmiedeberg's archives of pharmacology, 364(2), 96-104. | spa |
dcterms.references | Reysenbach A. L. and Cady S. L. 2001. Microbiology of ancient and modern hydrothermal systems. Trends Microbiol. 9:7986. | spa |
dcterms.references | Santiago-Santos, M. C., Ponce-Noyola, T., Olvera-Ramı́rez, R., Ortega-López, J., & Cañizares-Villanueva, R. O. (2004). Extraction and purification of phycocyanin from Calothrix sp. Process biochemistry, 39(12), 2047-2052. | spa |
dcterms.references | Samsonoff, W. A., & MacColl, R. (2001). Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat. Archives of microbiology, 176(6), 400-405. | spa |
dcterms.references | Schulze, P. S., Barreira, L. A., Pereira, H. G., Perales, J. A., & Varela, J. C. (2014). Light emitting diodes (LEDs) applied to microalgal production. Trends in biotechnology, 32(8), 422-430. | spa |
dcterms.references | Sekar, S., Chandramohan, M., 2008. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J. Appl. Phycol. 20, 113–136. | spa |
dcterms.references | Sharma, G., Kumar, M., Ali, M. I., & Jasuja, N. D. (2014). Effect of carbon content, salinity and pH on Spirulina platensis for phycocyanin, allophycocyanin and phycoerythrin accumulation. J Microb Biochem Technol, 6(4), 202-206. | spa |
dcterms.references | Singh, N. K., Parmar, A., & Madamwar, D. (2009). Optimization of medium components for increased production of C-phycocyanin from Phormidium ceylanicum and its purification by single step process. Bioresource technology, 100(4), 1663-1669. | spa |
dcterms.references | Singh, S., Kant, C., Yadav, R. K., Reddy, Y. P., & Abraham, G. (2019). Cyanobacterial Exopolysaccharides: Composition, Biosynthesis, and Biotechnological Applications. In Cyanobacteria (pp. 347-358). Academic Press. | spa |
dcterms.references | Sivasankari, S., Naganandhini, N., & Ravindran, D. (2014). Comparison of different extraction methods for phycocyanin extraction and yield from Spirulina platensis. Int. J. Curr. Microbiol. Appl. Sci, 3(8), 904-909. | spa |
dcterms.references | Soni, B., Trivedi, U., & Madamwar, D. (2008). A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresource Technology, 99(1), 188-194. | spa |
dcterms.references | Tiwari, O. N., Devi, W. I., Silvia, C., Devi, A. T., Oinam, G., Singh, O. A., ... & Shamjetshabam, M. (2015). Modulation of phycobiliprotein production in Nostoc muscorum through culture manipulation. Journal of Applied Biology & Biotechnology Vol, 3(04), 011-016. | spa |
dcterms.references | Trabelsi, L., M’sakni, N. H., Ouada, H. B., Bacha, H., & Roudesli, S. (2009a). Partial characterization of extracellular polysaccharides produced by cyanobacterium Arthrospira platensis. Biotechnology and Bioprocess Engineering, 14(1), 27-31. | spa |
dcterms.references | Trabelsi, L., Ouada, H. B., Bacha, H., & Ghoul, M. (2009b). Combined effect of temperature and light intensity on growth and extracellular polymeric substance production by the cyanobacterium Arthrospira platensis. Journal of applied phycology, 21(4), 405-412. | spa |
dcterms.references | Ürek, R. Ö., & Tarhan, L. (2012). The relationship between the antioxidant system and phycocyanin production in Spirulina maxima with respect to nitrate concentration. Turkish Journal of Botany, 36(4), 369-377. | spa |
dcterms.references | Van Eykelenburg, C. (1977). On the morphology and ultrastructure of the cell wall of Spirulina platensis. Antonie van leeuwenhoek, 43(2), 89-99. | spa |
dcterms.references | Viskari, P. J., & Colyer, C. L. (2003). Rapid extraction of phycobiliproteins from cultured cyanobacteria samples. Analytical Biochemistry, 319(2), 263-271. | spa |
dcterms.references | Wyman, M., 1992. An in vivo method for the estimation of phycoerythrin concentrations in marine cyanobacteria. Limnol. Ocean. 37, 1300–1306. | spa |
dcterms.references | Wu, H.L., Wang, G.H., Xiang, W.Z., Li, T., He, H., (2016). Stability and antioxidant activity of food grade phycocyanin isolated from Spirulina platensis. Int. J. Food Prop. 19, 10942912. | spa |
dcterms.references | Xie, Y., Jin, Y., Zeng, X., Chen, J., Lu, Y., & Jing, K. (2015). Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation. Bioresource technology, 180, 281-287. | spa |
dc.contributor.corporatename | Universidad Francisco de Paula Santander (Cúcuta, Colombia) | spa |
dc.contributor.researchgroup | Ambiente y Vida | spa |
dc.coverage.projectdates | 2021-08-25/2022-08-25 | spa |
dc.description.funder | 1Tener en cuenta que FINU solo financia el personal relacionado con encuestadores, auxiliares de campo, tabulador y transcriptor/digitador de documentos/ entrevistas, entrevistadores. El personal investigador que participa en el desarrollo del proyecto, se debe valorar como recursos de contrapartida en especie. 2 Adquisición o arrendamiento de herramientas y equipos. 3 El monto máximo que se aprueba por papelería es de 1/2 SMMLV Colombia 4 Servicios Técnicos: Incluye exámenes, análisis y pruebas de laboratorio, procesamiento de materias primas, análisis estadísticos, servicios de reprografía, mantenimiento y construcción de equipos requeridos para investigación. 5 Documentación y bibliografía 6 En modalidad de ponencia o asesoría técnica externa relacionada con el desarrollo del proyecto. Solo se financia la participación como ponente hasta en un evento nacional y uno internacional. 7 Se debe especificar la fuente de contrapartida. En el caso de existir más de una fuente de contrapartida se debe adicionar columnas al lado derecho especificando cada una de ellas. Los aportes de contrapartida en efectivo y/o especie deben estar soportados con una carta de compromiso o Certificado de Disponibilidad Presupuestal según corresponda. | spa |
dc.description.methods | Mixta | spa |
dc.description.researcharea | Biotecnología | spa |
dc.publisher.place | Cúcuta | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.subject.agrovoc | Cianobacterias | |
dc.subject.agrovoc | Ficobiliproteinas | |
dc.subject.proposal | Oscillatoria sp | spa |
dc.subject.proposal | Ficocianinas | spa |
dc.subject.proposal | Carbohidratos | spa |
dc.subject.proposal | Desarrollo sostenible | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_18ws | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/other | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/PID | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardcost | $25’000.000 | spa |
oaire.awardtotalcost | $ 350’982.038 | spa |
oaire.funderidentifier.local | FINU 001-2021 | |
oaire.fundername | Ministerio de Ciencia, Tecnología e Innovación [CO] Minciencias | spa |
oaire.fundername | Universidad Francisco de Paula Santander | spa |
oaire.fundingstream | Programa Jóvenes Investigadores | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |