Show simple item record

dc.contributor.authorOlaya, Jhon
dc.contributor.authorBautista-Ruiz, Jorge
dc.contributor.authorAlfarez, Fabio Leonardo
dc.date.accessioned2021-12-08T19:41:55Z
dc.date.available2021-12-08T19:41:55Z
dc.date.issued2018-10
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1748
dc.description.abstractEn este trabajo se presenta la síntesis y la evaluación de la resistencia a la corrosión de recubrimientos de SiO2-TiO2-ZrO2-BiO2 depositados por la técnica de centrifugado sobre acero inoxidable AISI 316L. Los soles se prepararon a partir de una mezcla de precursores orgánicos, como el tetraetoxisilano (TEOS) al 98%, tetrabutóxido de titanio (TBT) al 97%, zirconio (IV) butóxido (TBZ) al 80% en solución 1-butanol y nitrato de bismuto penta-hidratado Bi(NO3)3*5H2O. La resistencia a la corrosión se determinó mediante ensayos de curvas de polarización potenciodinámica y de espectroscopia de impedancia electroquímica (EIS) en una solución electrolítica de 3,5% Wt de NaCl + 0,5 M de H2SO4. A los soles preparados se les caracterizó mediante estudio reológico, de pH en función del tiempo, mediciones de espectroscopia de infrarrojo por transformada de Fourier (FTIR) y calorimetría diferencial de barrido (DSC). Los recubrimientos se caracterizaron mediante difracción de rayos X (XRD), microscopia electrónica de barrido (MEB), espectroscopia de energías dispersivas (EDX), fluorescencia de rayos X (XRF) y medidas de adherencia. Los resultados mostraron que las películas ofrecen una buena resistencia a la corrosión sobre el sustrato metálico disminuyendo los valores de densidades de corriente hasta en un orden de magnitudspa
dc.description.abstractThis report show the synthesis and corrosion resistance of SiO2-TiO2-ZrO2-BiO2 coatings deposited by spin-coating on AISI 316L stainless steel. The soles were prepared from a mixture of organic precursors, such as 98% tetraethoxysilane (TEOS), titanium tetrabutoxide (TBT) 97%, Zirconium (IV) butoxide (TBZ) 80% in 1-butanol solution and bismuth penta nitrate-hydrate Bi (NO3)3*5H2O. The coatings were evaluated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) test in an electrolytic solution of 3.5% Wt NaCl + 0.5 M H2SO4. The soles prepared were studied trough rheological, pH as a time function, Fourier Transform Infrared Spectroscopy (FTIR) and differential scanning calorimetry (DSC) analysis. The coating were characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and dispersive energy spectroscopy (EDX), X ray fluorescence (XRF) and adhesion measurements. The results showed that the films offer good corrosion resistance on the metal substrate, decreasing current densities up to one order of magnitude.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherBoletin de la Sociedad Espanola de Ceramica y Vidriospa
dc.relation.ispartofBoletin de la Sociedad Espanola de Ceramica y Vidrio
dc.rights0366-3175/© 2018 SECV. Publicado por Elsevier Espana, ˜ S.L.U. Este es un art´ıculo Open Access bajo la licencia CC BY-NC-ND (http:// creativecommons.org/licenses/by-nc-nd/4.0/).spa
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S0366317518300141spa
dc.titleSynthesis and corrosion resistance evaluation of coatings of SiO2-TiO2-ZrO2-BiO2 on 316L stainless produced by sol-geleng
dc.typeArtículo de revistaspa
dcterms.referencesS.M. Hosseinalipour, A. Ershad-langroudi, A.N. Hayati, A.M. Nabizade-Haghighi Characterization of sol–gel coated 316L stainless steel for biomedical applications Prog. Org. Coat., 67 (4) (2010), pp. 371-374spa
dcterms.referencesS. Pourhashem, A. Afshar Double layer bioglass-silica coatings on 316L stainless steel by sol–gel method Ceram. Int., 40 (1) (2014), pp. 993-1000spa
dcterms.referencesS.K. Tiwari, T. Mishra, M.K. Gunjan, A.S. Bhattacharyya, T.B. Singh, R. Singh Development and characterization of sol–gel silica–alumina composite coatings on AISI 316L for implant applications Surf. Coat. Technol., 201 (16–17) (2007), pp. 7582-7588spa
dcterms.referencesA. Balamurugan, S. Kannan, S. Rajeswari Evaluation of TiO2 coatings obtained using the sol–gel technique on surgical grade type 316L stainless steel in simulated body fluid Mater. Lett., 59 (24–25) (2005), pp. 3138-3143spa
dcterms.referencesS.K. Tiwari, J. Adhikary, T.B. Singh, R. Singh Preparation and characterization of sol–gel derived yttria doped zirconia coatings on AISI 316L Thin Solid Films, 517 (16) (2009), pp. 4502-4508spa
dcterms.referencesY. Adraider, Y.X. Pang, F. Nabhani, S.N. Hodgson, M.C. Sharp, A. Al-Waidh Fabrication of zirconium oxide coatings on stainless steel by a combined laser/sol–gel technique Ceram. Int., 39 (8) (2013), pp. 9665-9670spa
dcterms.referencesD.G. Li, J.D. Wang, D.R. Chen, P. Liang Influences of pH value, temperature, chloride ions and sulfide ions on the corrosion behaviors of 316L stainless steel in the simulated cathodic environment of proton exchange membrane fuel cell J. Power Sources, 272 (2014), pp. 448-456spa
dcterms.referencesA. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4 Corros. Sci., 50 (3) (2008), pp. 780-794spa
dcterms.referencesJ.R. Davis Corrosion: Unsertanding the Basics ASM International, Ohio, United States of America (2000)spa
dcterms.referencesD. Landolt Corrosion and Surface Chemistry of Metals (1st ed.), EPFL Press, Impreso en Italia (2007)spa
dcterms.referencesD. Wang, G.P. Bierwagen Sol-gel coatings on metals for corrosion protection Prog. Org. Coat., 64 (4) (2009), pp. 327-338spa
dcterms.referencesM. Guglielmi Sol-gel coatings on metals J. Sol-Gel Sci. Technol., 8 (1) (1997), pp. 443-449spa
dcterms.referencesN.N. Voevodin, N.T. Grebasch, W.S. Soto, F.E. Arnold, M.S. Donley Potentiodynamic evaluation of sol-gel coatings with inorganic inhibitors Surf. Coat. Technol., 140 (1) (2001), pp. 24-28spa
dcterms.referencesF.L. Alférez Vega, J.J. Olaya, J. Bautista Ruiz Synthesis and corrosion resistance of SiO2-TiO2-ZrO2-Bi2O3 coatings spin-coated on Ti6Al4V alloy Ceram. Int., 44 (2) (2018), pp. 2123-2131spa
dcterms.referencesH. Weidong, Q. Wei, W. Xiaohong, D. Xianbo, C. Long, J. Zhaohua The photocatalytic properties of bismuth oxide films prepared through the sol-gel method Thin Solid Films, 515 (13) (2007), pp. 5362-5365spa
dcterms.referencesW. Xiaohong, Q. Wei, H. Weidong Thin bismuth oxide films prepared through the sol-gel method as photocatalyst J. Mol. Catal. A Chem., 261 (2007), pp. 167-171spa
dcterms.referencesA. Veber, Š. Kunej, D. Suvorov Synthesis and microstructural characterization of Bi12SiO20 (BSO) thin films produced by the sol-gel process Ceram. Int., 36 (1) (2010), pp. 245-250spa
dcterms.referencesAdvanced Ceramics, Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing, vol. 5, no. Reapproved 2015, 2017, pp. 1-29.spa
dcterms.referencesStandard Practice for Conventions Applicable to Electrochemical Measurements, West Conshohocken, 2016, pp. 1-9.spa
dcterms.referencesB. Tooth The Hydrothermal Chemistry of Bismuth and The Liquid Bismuth Collector Model University of Adelaide, Australia (2013)spa
dcterms.referencesF. Rubio, J. Rubio, J.L. Oteo A FT-IR Study of the Hydrolysis of Tetraethylorthosilicate (TEOS) Spectroscopy Letters, 31 (1) (1998), pp. 199-219spa
dcterms.referencesL.E. Davies, N.A. Bonini, S. Locatelli, E.E. Gonzo Characterization and catalytic activity of zirconium dioxide prepared by sol-gel Lat. Am. Appl. Res., 35 (1) (2005), pp. 23-28spa
dcterms.referencesM.J. Velasco, F. Rubio, J. Rubio, J.L. Oteo Hydrolysis of Titanium Tetrabutoxide. Study by FT-IR Spectroscopy Spectroscopy Letters, 32 (2) (1999), pp. 289-304spa
dcterms.referencesY. Dimitriev, M. Krupchanska, Y. Ivanova, A. Staneva Sol-gel synthesis of materials in the system Bi2O3 - SiO2 J. Univ. Chem. Technol. Metallurgy., 45 (1) (2010), pp. 39-42spa
dcterms.referencesJ.R. Martínez, F. Ruiz, Y.V. Vorobiev, F. Pérez Robles, J. González Hernández Infrared spectroscopy analysis of the local atomic structure in silica prepared by sol-gel J. Chem. Phys., 109 (17) (1998), p. 7511spa
dcterms.referencesM. Duta, L. Predoana, J.M. Calderon-Moreno, S. Preda, M. Anastasescu, A. Marin, et al. Nb-doped TiO2 sol–gel films for CO sensing applications Mater. Sci. Semicond. Process., 42 (2016), pp. 397-404spa
dcterms.referencesF. Miao, B. Tao, P.K. Chu Synthesis, microstructure, and electronic band structure properties of nanocrystalline neodymium-doped bismuth titanate ferroelectric films fabricated by the sol-gel method Mater. Res. Bull., 61 (2015), pp. 238-244spa
dcterms.referencesJ.M. de Vega Vega. Mecanismos de protección anticorrosiva del aluminio mediante recubrimientos de pintura formulados con pigmentos de intercambio iónico (tesis doctoral). Madrid: Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Complutense de Madrid, 2011.spa
dcterms.referencesH. Weidong, Q. Wei, W. Xiaohong, N. Hailong Thin bismuth oxide films prepared through the sol–gel method Mat Lett., 61 (2007), pp. 4100-4102spa
dcterms.referencesR. Roest, B.A. Latella, G. Heness, B. Ben-Nissan Adhesion of sol–gel derived hydroxyapatite nanocoatings on anodised pure titanium and titanium (Ti6Al4V) alloy substrates Surf. Coat. Technol., 205 (11) (2011), pp. 3520-3529spa
dcterms.referencesR.S. Dubey, Y.B.R.D. Rajesh, M.A. More Synthesis and characterization of SiO2 nanoparticles via sol-gel method for industrial applications Mater. Today Proc., 2 (4–5) (2015), pp. 3575-3579spa
dcterms.referencesB. Babiarczuk, A. Szczurek, A. Donesz-Sikorska, I. Rutkowska, J. Krzak The influence of an acid catalyst on the morphology, wettabillity, adhesion and chemical structure properties of TiO2 and ZrO2 sol–gel thin films Surf. Coat. Technol., 285 (2015), pp. 134-145spa
dcterms.referencesC.E. Sánchez Evaluación de Recubrimientos Orgánicos por Métodos Potenciostáticos en Ensayos de Corrosión Universidad Nacional Autónoma de México, México (2010), p. 93spa
dcterms.referencesF.E. Bedoya Lora, J.A. Calderón Gutiérrez Análisis de los parámetros determinados por espectroscopia de impedancia electroquímica para la evaluación del desempeño de pinturas Rev. Colomb. Mater. (2) (2012), pp. 110-117spa
dcterms.referencesM. Norouzi, A. Afrasiabi Garekani Corrosion protection by zirconia-based thin films deposited by a sol–gel spin coating method Ceram. Int., 40 (2) (2014), pp. 2857-2861spa
dcterms.referencesD.A. López, N.C. Rosero-Navarro, J. Ballarre, A. Durán, M. Aparicio, S. Ceré Multilayer silica-methacrylate hybrid coatings prepared by sol–gel on stainless steel 316L: Electrochemical evaluation Surf. Coat. Technol., 202 (10) (2008), pp. 2194-2201spa
dcterms.referencesS.K. Tiwari, M. Tripathi, R. Singh Electrochemical behavior of zirconia based coatings on mild steel prepared by sol–gel method Corros. Sci., 63 (2012), pp. 334-341spa
dc.identifier.doihttps://doi.org/10.1016/j.bsecv.2018.02.001
dc.publisher.placeMadrid , Españaspa
dc.relation.citationeditionVol.57 No.5.(2018)spa
dc.relation.citationendpage206spa
dc.relation.citationissue5 (2018)spa
dc.relation.citationstartpage195spa
dc.relation.citationvolume57spa
dc.relation.citesLeonardo Alferez, F., Jairo Olaya, J., & Hernando Bautista, J. (2018). Synthesis and corrosion resistance evaluation of coatings of SiO2-TiO2-ZrO2-BiO2 on 316L stainless produced by sol-gel. BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO, 57(5), 195-206.
dc.relation.ispartofjournalBoletin de la Sociedad Espanola de Ceramica y Vidriospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalSol-gelspa
dc.subject.proposal316Lspa
dc.subject.proposalRecubrimientospa
dc.subject.proposalCompuesto de (SiO2-TiO2-ZrO2-BiO2)spa
dc.subject.proposalCorrosiónspa
dc.subject.proposalAdherenciaspa
dc.subject.proposalCoatingeng
dc.subject.proposal(SiO2-TiO2-ZrO2-BiO2) compositeeng
dc.subject.proposalCorrosioneng
dc.subject.proposalAdherenceeng
dc.title.translatedSynthesis and corrosion resistance evaluation of coatings of SiO2-TiO2-ZrO2-BiO2 on 316L stainless produced by sol-gel
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record