Mostrar el registro sencillo del ítem
Design of a microalgae bio-reactive facade reactor for cultivation of Chlorella vulgaris
dc.contributor.author | Barajas Ferreira, Crisóstomo | |
dc.contributor.author | Castro Padilla, Lucero | |
dc.contributor.author | Sánchez, Ginna Vanegas | |
dc.contributor.author | González-Delgado, Angel Darío | |
dc.contributor.author | Barajas Solano, andres F | |
dc.date.accessioned | 2021-12-01T16:34:12Z | |
dc.date.available | 2021-12-01T16:34:12Z | |
dc.date.issued | 2017-11-14 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1617 | |
dc.description.abstract | The increasing global demand for energy that has existed during many decades has affected the environment due to the greenhouse gas emissions, which are the result of the inadequate use of fossil fuels. This situation has contributed to the development of researchers regarding the microalgae production to capture the CO2 present in the atmosphere. Therefore, this paper presents the influence of the design variables (width and depth) of a flat-plate photobioreactor on the biomass productivity of Chlorella vulgaris UTEX 1803 and the evaporated volume for a period of 74 days, under the environmental conditions of Bucaramanga, Colombia. In addition, the effect of evaporated volume and temperature on biomass productivity was analyzed. It was verified that the average temperature of 29.72 °C is not an influential variable on biomass productivity. According to the results, the design of a photobioreactor with width dimensions greater than 15 cm and depth 3 cm is required to obtain a productivity of 0.35 g/L d. | eng |
dc.format.extent | 8 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Contemporary Engineering Sciences | spa |
dc.relation.ispartof | Contemporary Engineering Sciences ISSN: 1314-7641, 2017 vol:10 fasc: 22 págs: 1067 - 1074, DOI:https://doi.org/10.12988/ces.2017.7884 | |
dc.rights | 2017 Crisóstomo Barajas Ferreira et al. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | eng |
dc.source | http://www.m-hikari.com/ces/ces2017/ces21-24-2017/7884.html | spa |
dc.title | Design of a microalgae bio-reactive facade reactor for cultivation of Chlorella vulgaris | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Y. Sun, Z. Chen, G. Wu, Q. Wu, F. Zhang, Z. Niu and H.-Y. Hu, Characteristics of water quality of municipal wastewater treatment plants in China: implications for resources utilization and management, Journal of Cleaner Production, 131 (2016), 1–9. https://doi.org/10.1016/j.jclepro.2016.05.068 | spa |
dcterms.references | I. Zambon, D. Monarca, M. Cecchini, R. Bedini, L. Longo, R. Romagnoli and A. Marucci, Alternative Energy and the Development of Local Rural Contexts: An Approach to Improve the Degree of Smart Cities in the Central-Southern Italy, Contemporary Engineering Sciences, 9 (2016), 1371–1386. https://doi.org/10.12988/ces.2016.68143 | spa |
dcterms.references | Á. D. González-Delgado and Y. Peralta-Ruiz, Thermodynamic Modeling of Microalgae Oil Extraction Using Supercritical Fluids, Contemporary Engineering Sciences, 10 (2017), 503–511. https://doi.org/10.12988/ces.2017.7334 | spa |
dcterms.references | L. Janke, A. F. Leite, K. Batista, W. Silva, M. Nikolausz, M. Nelles, and W. Stinner, Enhancing biogas production from vinasse in sugarcane biorefineries: Effects of urea and trace elements supplementation on process performance and stability, Bioresource Technology, 217 (2016), 10–20. https://doi.org/10.1016/j.biortech.2016.01.110 | spa |
dcterms.references | M. Husaini, K. Rosyadi, N. Pujianti, R. Setyaningrum and F. Rahman, Evaluation of wastewater treatment toward physical, chemical and biology parameters in WWTP Lambung Mangkurat Banjarmasin, Journal of Engineering and Applied Science, 12 (2017), 226–231. | spa |
dcterms.references | X. Chen and K. Fukushi, Development of an innovative decentralized treatment system for the reclamation and reuse of strong wastewater from rural community: Effects of elevated CO2 concentrations, Journal of Environmental Management, 180 (2016), 401–408. https://doi.org/10.1016/j.jenvman.2016.05.071 | spa |
dcterms.references | Y. Christi, Biodiesel from microalgae, Biotechnology Advances, 25 (2007), 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001 | spa |
dcterms.references | D. C. Kligerman and E. J. Bouwer, Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review, Renewable & Sustainable Energy Reviews, 52 (2015), 1834–1846. https://doi.org/10.1016/j.rser.2015.08.030 | spa |
dcterms.references | I. Rawat, R. Ranjith Kumar, T. Mutanda and F. Bux, Biodiesel from microalgae: A critical evaluation from laboratory to large scale production, Applied Energy, 103 (2013), 444–467. https://doi.org/10.1016/j.apenergy.2012.10.004 | spa |
dcterms.references | M. P. Caporgno, A. Taleb, M. Olkiewicz, J. Font, J. Pruvost, J. Legrand and C. Bengoa, Microalgae cultivation in urban wastewater: Nutrient removal and biomass production for biodiesel and methane, Algal Research, 10 (2015), 232–239. https://doi.org/10.1016/j.algal.2015.05.011 | spa |
dcterms.references | I. Dogaris, M. Welch, A. Meiser, L. Walmsley and G. Philippidis, A novel horizontal photobioreactor for high-density cultivation of microalgae, Bioresource Technology, 198 (2015), 316–324. https://doi.org/10.1016/j.biortech.2015.09.030 | spa |
dcterms.references | A. San Pedro, C. V. González-López, F. G. Acién and E. Molina-Grima, Outdoor pilot production of Nannochloropsis gaditana : Influence of culture parameters and lipid production rates in flat-panel photobioreactors, Algal Research, 18 (2016), 156–165. https://doi.org/10.1016/j.algal.2016.06.011 | spa |
dc.identifier.doi | 10.12988/ces.2017.7884 | |
dc.publisher.place | Bulgaria | spa |
dc.relation.citationedition | Vol. 10, No. 22 (2017) | spa |
dc.relation.citationendpage | 1074 | spa |
dc.relation.citationissue | 22 (2017) | spa |
dc.relation.citationstartpage | 1067 | spa |
dc.relation.citationvolume | 10 | spa |
dc.relation.cites | Ferreira, C. B., Padilla, L. C., Sanchez, G. V., Gonzalez-Delgado, A. y Barajas-Solano, A. (2017). Design of a microalgae bio-reactive facade reactor for cultivation of Chlorella vulgaris. Contemporary Engineering Sciences, 10(22), 1067–1074. https://doi.org/10.12988/ces.2017.7884 | |
dc.relation.ispartofjournal | Contemporary Engineering Sciences | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | Facade photobioreactor | eng |
dc.subject.proposal | Chlorella vulgaris | eng |
dc.subject.proposal | Biomass Productivity | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Ambiente y Vida - GIAV [124]