Show simple item record

dc.contributor.authorBarajas Ferreira, Crisóstomo
dc.contributor.authorCastro Padilla, Lucero
dc.contributor.authorSánchez, Ginna Vanegas
dc.contributor.authorGonzález-Delgado, Angel Darío
dc.contributor.authorBarajas Solano, andres F
dc.date.accessioned2021-12-01T16:34:12Z
dc.date.available2021-12-01T16:34:12Z
dc.date.issued2017-11-14
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1617
dc.description.abstractThe increasing global demand for energy that has existed during many decades has affected the environment due to the greenhouse gas emissions, which are the result of the inadequate use of fossil fuels. This situation has contributed to the development of researchers regarding the microalgae production to capture the CO2 present in the atmosphere. Therefore, this paper presents the influence of the design variables (width and depth) of a flat-plate photobioreactor on the biomass productivity of Chlorella vulgaris UTEX 1803 and the evaporated volume for a period of 74 days, under the environmental conditions of Bucaramanga, Colombia. In addition, the effect of evaporated volume and temperature on biomass productivity was analyzed. It was verified that the average temperature of 29.72 °C is not an influential variable on biomass productivity. According to the results, the design of a photobioreactor with width dimensions greater than 15 cm and depth 3 cm is required to obtain a productivity of 0.35 g/L d.eng
dc.format.extent8 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherContemporary Engineering Sciencesspa
dc.relation.ispartofContemporary Engineering Sciences ISSN: 1314-7641, 2017 vol:10 fasc: 22 págs: 1067 - 1074, DOI:https://doi.org/10.12988/ces.2017.7884
dc.rights2017 Crisóstomo Barajas Ferreira et al. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.eng
dc.sourcehttp://www.m-hikari.com/ces/ces2017/ces21-24-2017/7884.htmlspa
dc.titleDesign of a microalgae bio-reactive facade reactor for cultivation of Chlorella vulgariseng
dc.typeArtículo de revistaspa
dcterms.referencesY. Sun, Z. Chen, G. Wu, Q. Wu, F. Zhang, Z. Niu and H.-Y. Hu, Characteristics of water quality of municipal wastewater treatment plants in China: implications for resources utilization and management, Journal of Cleaner Production, 131 (2016), 1–9. https://doi.org/10.1016/j.jclepro.2016.05.068spa
dcterms.referencesI. Zambon, D. Monarca, M. Cecchini, R. Bedini, L. Longo, R. Romagnoli and A. Marucci, Alternative Energy and the Development of Local Rural Contexts: An Approach to Improve the Degree of Smart Cities in the Central-Southern Italy, Contemporary Engineering Sciences, 9 (2016), 1371–1386. https://doi.org/10.12988/ces.2016.68143spa
dcterms.referencesÁ. D. González-Delgado and Y. Peralta-Ruiz, Thermodynamic Modeling of Microalgae Oil Extraction Using Supercritical Fluids, Contemporary Engineering Sciences, 10 (2017), 503–511. https://doi.org/10.12988/ces.2017.7334spa
dcterms.referencesL. Janke, A. F. Leite, K. Batista, W. Silva, M. Nikolausz, M. Nelles, and W. Stinner, Enhancing biogas production from vinasse in sugarcane biorefineries: Effects of urea and trace elements supplementation on process performance and stability, Bioresource Technology, 217 (2016), 10–20. https://doi.org/10.1016/j.biortech.2016.01.110spa
dcterms.referencesM. Husaini, K. Rosyadi, N. Pujianti, R. Setyaningrum and F. Rahman, Evaluation of wastewater treatment toward physical, chemical and biology parameters in WWTP Lambung Mangkurat Banjarmasin, Journal of Engineering and Applied Science, 12 (2017), 226–231.spa
dcterms.referencesX. Chen and K. Fukushi, Development of an innovative decentralized treatment system for the reclamation and reuse of strong wastewater from rural community: Effects of elevated CO2 concentrations, Journal of Environmental Management, 180 (2016), 401–408. https://doi.org/10.1016/j.jenvman.2016.05.071spa
dcterms.referencesY. Christi, Biodiesel from microalgae, Biotechnology Advances, 25 (2007), 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001spa
dcterms.referencesD. C. Kligerman and E. J. Bouwer, Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review, Renewable & Sustainable Energy Reviews, 52 (2015), 1834–1846. https://doi.org/10.1016/j.rser.2015.08.030spa
dcterms.referencesI. Rawat, R. Ranjith Kumar, T. Mutanda and F. Bux, Biodiesel from microalgae: A critical evaluation from laboratory to large scale production, Applied Energy, 103 (2013), 444–467. https://doi.org/10.1016/j.apenergy.2012.10.004spa
dcterms.referencesM. P. Caporgno, A. Taleb, M. Olkiewicz, J. Font, J. Pruvost, J. Legrand and C. Bengoa, Microalgae cultivation in urban wastewater: Nutrient removal and biomass production for biodiesel and methane, Algal Research, 10 (2015), 232–239. https://doi.org/10.1016/j.algal.2015.05.011spa
dcterms.referencesI. Dogaris, M. Welch, A. Meiser, L. Walmsley and G. Philippidis, A novel horizontal photobioreactor for high-density cultivation of microalgae, Bioresource Technology, 198 (2015), 316–324. https://doi.org/10.1016/j.biortech.2015.09.030spa
dcterms.referencesA. San Pedro, C. V. González-López, F. G. Acién and E. Molina-Grima, Outdoor pilot production of Nannochloropsis gaditana : Influence of culture parameters and lipid production rates in flat-panel photobioreactors, Algal Research, 18 (2016), 156–165. https://doi.org/10.1016/j.algal.2016.06.011spa
dc.identifier.doi10.12988/ces.2017.7884
dc.publisher.placeBulgariaspa
dc.relation.citationeditionVol. 10, No. 22 (2017)spa
dc.relation.citationendpage1074spa
dc.relation.citationissue22 (2017)spa
dc.relation.citationstartpage1067spa
dc.relation.citationvolume10spa
dc.relation.citesFerreira, C. B., Padilla, L. C., Sanchez, G. V., Gonzalez-Delgado, A. y Barajas-Solano, A. (2017). Design of a microalgae bio-reactive facade reactor for cultivation of Chlorella vulgaris. Contemporary Engineering Sciences, 10(22), 1067–1074. https://doi.org/10.12988/ces.2017.7884
dc.relation.ispartofjournalContemporary Engineering Sciencesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalFacade photobioreactoreng
dc.subject.proposalChlorella vulgariseng
dc.subject.proposalBiomass Productivityeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record