dc.contributor.author | Blanco, Estefany | |
dc.contributor.author | González-Delgado, Angel Darío | |
dc.contributor.author | García-Martinez, Janet | |
dc.contributor.author | Sanchez-Galvis, Edwar | |
dc.contributor.author | Barajas Solano, andres F | |
dc.date.accessioned | 2021-12-01T15:42:25Z | |
dc.date.available | 2021-12-01T15:42:25Z | |
dc.date.issued | 2017-12-24 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1612 | |
dc.description.abstract | Microalgae have received increasing attentions as an alternative treatment approach
to remediate wastewater for both nutrient removal and biomass production.
Wastewater from aquaculture industry contains high levels of nitrogen and
phosphorus, which affect plant growth. Conventional methods for treating
aquaculture wastewater generally are inefficient and unprofitable. In this work,
microalgae Chlorella vulgaris growth was studied in aquaculture effluent medium in order to reduce its contents of NO3 and PO4. Furthermore, the effect of NaHCO3
and Na2CO3 concentrations and addition time on biomass productivity was evaluate
to determine the most suitable conditions for biomass growth. It was found that
highest biomass content (0.3 g/L) was achieved at 3.4 g/L of sodium bicarbonate
concentration and 19 h of addition time. | eng |
dc.format.extent | 8 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Contemporary Engineering Sciences | spa |
dc.relation.ispartof | Contemporary Engineering Sciences ISSN: 1314-7641, 2017 vol:10 fasc: 35 págs: 1701 - 1708, DOI:https://doi.org/10.12988/ces.2017.712198 | |
dc.rights | 2017 Estefany Blanco-Carvajal et al. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | eng |
dc.source | http://www.m-hikari.com/ces/ces2017/ces33-36-2017/712198.html | spa |
dc.title | Bioremediation of Aquaculture Wastewater Using Microalgae Chlorella vulgaris | eng |
dc.type | Artículo de revista | spa |
dcterms.references | A. Farhan, M. Udaiyappan, H. Abu, Hasan, Mohd Sobri Takriff and Siti Rozaimah Sheikh Abdullah, A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment, Journal of Water Process Engineering, 20 (2017), 8–21. https://doi.org/10.1016/j.jwpe.2017.09.006 | spa |
dcterms.references | J. Essomba, J. Nsami, P. Desire, Belibi Belibi, Guy Merlain Tagne and Joseph Ketcha Mbadcam, Adsorption of Cadmium (II) Ions from Aqueous Solution onto Kaolinite and Metakaolinite, Contemporary Engineering Sciences, 2 (2014), 11–30. https://doi.org/10.12988/pacs.2014.31017 | spa |
dcterms.references | T. Fazal, A. Mushtaq, F. Rehman, Asad Ullah Khan, Naim Rashid, Wasif Farooq, Muhammad Saif Ur Rehman and Jian Xu, Bioremediation of textile wastewater and successive biodiesel production using microalgae, Renewable and Sustainable Energy Reviews, 82 (2018), 3107–3126. https://doi.org/10.1016/j.rser.2017.10.029 | spa |
dcterms.references | K. Ling Yu, P. Loke Show, H. Chyuan Ong, Tau Chuan Ling, John Chi-Wei Lan, Wei-Hsin Chen and Jo-Shu Chang, Microalgae from wastewater treatment to biochar – Feedstock preparation and conversion technologies, Energy Conversion and Management, 150 (2017), 1–13. https://doi.org/10.1016/j.enconman.2017.07.060 | spa |
dcterms.references | B. Brasil, F. Silva, F. Siqueira, Microalgae biorefineries: The Brazilian scenario in perspective, New Biotechnology, 39 (2017), 90-98. https://doi.org/10.1016/j.nbt.2016.04.007 | spa |
dcterms.references | S. Castellucci, S. Cocchi and C. Celma, Energy Characterization of Residual Biomass in Mediterranean Area for Small Biomass Gasifiers in According to the European Standards, Applied Mathematical Sciences, 8 (2014), 6621– 6633. https://doi.org/10.12988/ams.2014.46439 | spa |
dcterms.references | Á. González-Delgado, J. García-Martínez and Y. Y. Peralta-Ruíz, Cell Disruption and Lipid Extraction from Microalgae Amphiprora sp. Using Acid Hydrolysis- Solvent Extraction Route, Contemporary Engineering Sciences, 10 (2017), 841–849. https://doi.org/10.12988/ces.2017.78791 | spa |
dcterms.references | Á. González-Delgado, J. García-Martínez and Y. Y. Peralta-Ruíz, Evaluation of Two Pre-Treatments for Improving Lipid Extraction from Microalgae Navicula sp., Contemporary Engineering Sciences, 10 (2017), 851–859. https://doi.org/10.12988/ces.2017.78792 | spa |
dcterms.references | Y. Wang, Shih-Hsin Ho, Chieh-Lun Cheng, Wan-Qian Guo, Dillirani Nagarajan, Nan-Qi Ren, Duu-Jong Lee, Jo-Shu Chang, Perspectives on the feasibility of using microalgae for industrial wastewater treatment, Bioresource Technology, 222 (2016), 485–497. https://doi.org/10.1016/j.biortech.2016.09.106 | spa |
dcterms.references | R. Andersen, Algal Culturing Techniques, London: Elsevier Academic Press, 2005. | spa |
dcterms.references | M. Borowitzka, N. Moheimani, Total protein determination methods, Algae for Biofuels and Energy 2011, 274–283. | spa |
dcterms.references | D. Harris, Análisis Químico Cuantitativo, Reverté S.A., 2007 | spa |
dcterms.references | Hach, Standard Methods for the Examination of Water and Wastewater, 2015. | spa |
dcterms.references | Ramachandran Srinivasan, Velayutham Arumuga Kumar, Dileep Kumar, Nachimuthu Ramesh, Subramanian Babu, Kodiveri Muthukalianan Gothandam, Effect of Dissolved Inorganic Carbon on β-Carotene and Fatty Acid Production in Dunaliella sp., Applied Biochemistry and Biotechnology, 175 (2015), 2895-2906. https://doi.org/10.1007/s12010-014-1461-6 | spa |
dc.identifier.doi | 10.12988/ces.2017.712198 | |
dc.publisher.place | Bulgaria | spa |
dc.relation.citationedition | Vol. 10, No. 35 (2017) | spa |
dc.relation.citationendpage | 1708 | spa |
dc.relation.citationissue | 35 (2017) | spa |
dc.relation.citationstartpage | 1701 | spa |
dc.relation.citationvolume | 10 | spa |
dc.relation.cites | Blanco-Carvajal, E., Gonzalez-Delgado, A. D., Garcia-Martinez, J. B., Sanchez-Galvis, E. y Barajas-Solano, A. F. (2017). Bioremediation of aquaculture wastewater using microalgae Chlorella vulgaris. Contemporary Engineering Sciences, 10(35), 1701–1708. https://doi.org/10.12988/ces.2017.712198 | |
dc.relation.ispartofjournal | Contemporary Engineering Sciences | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | Biomass | eng |
dc.subject.proposal | Microalgae | eng |
dc.subject.proposal | Growth | eng |
dc.subject.proposal | Treatment | eng |
dc.subject.proposal | Wastewater | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |