Mostrar el registro sencillo del ítem

dc.contributor.authorSanguino, Paola Andrea
dc.contributor.authorGonzález-Delgado, Angel Darío
dc.contributor.authorBarajas Solano, andres F
dc.date.accessioned2021-12-01T00:39:37Z
dc.date.available2021-12-01T00:39:37Z
dc.date.issued2018-04-04
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1603
dc.description.abstractRecently, microalgal biomass has attached much attention due to the wide diversity of compounds synthesized from different metabolic pathways. This work attempts to study metabolites recovery from Nannochloropsis sp. biomass concentrated by centrifugation and flocculation. Carbohydrates were obtained using acid and alkaline hydrolysis required for cell disruption. Protein extraction was performed after alkaline pretreatment and lipids were recovery by acid hydrolysis- Soxhlet and alkaline hydrolysis- Soxhlet extraction routes. It was found that carbohydrates were recovered by acid hydrolysis in 41 % and 35.39 % for centrifuged and flocculated biomass, respectively, values higher than thus reported using alkaline hydrolysis. For protein extraction, centrifuged biomass exhibited higher recovery yield (55.48%) than flocculated biomass (38.40%). The lipid extraction route that achieved highest yield (43.45%) was acid hydrolysis with HCl followed by Soxhlet extraction with hexane. In addition, statistical analysis by T test suggested that flocculants affect negatively biomass culture, hence, efficiency of metabolites extraction.eng
dc.format.extent9 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherContemporary Engineering Sciencesspa
dc.relation.ispartofContemporary Engineering Sciences ISSN: 1314-7641, 2018 vol:11 fasc: 14 págs: 669 - 677
dc.rights2018 P.A. Sanguino-Barajas et al. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.eng
dc.sourcehttp://www.m-hikari.com/ces/ces2018/ces13-16-2018/8240.htmlspa
dc.titleImprovement of Biorefinery Efficiency for Microalgae Nannochloropsis sp. via Harvesting Technology Evaluationeng
dc.typeArtículo de revistaspa
dcterms.referencesR. Sathasivam, R. Radhakrishnan, A. Hashem Elsayed F. Abd_Allah, Microalgae metabolites : A rich source for food and medicine, Saudi Journal of Biological Sciences, (2017). In Press https://doi.org/10.1016/j.sjbs.2017.11.003spa
dcterms.referencesB. Serive, R. Kaas, J. Bérard, Virginie Pasquet, Laurent Picot, Jean-Paul Cadoret, Selection and optimisation of a method for efficient metabolites extraction from microalgae, Bioresource Technology, 124 (2012), 311–320. https://doi.org/10.1016/j.biortech.2012.07.105spa
dcterms.referencesF. Ahmad, S. Kumar, N. Mahmoud, Ismail Rawat, Faizal Bux, Evaluation of various cell drying and disruption techniques for sustainable metabolite extractions from microalgae grown in wastewater: A multivariate approach, Journal of Cleaner Production, 182 (2018), 634–643. https://doi.org/10.1016/j.jclepro.2018.02.098spa
dcterms.referencesE. Blanco-Carvajal, E. Sánchez-Galvis, Á.D. González-Delgado, J.B. Garcia Martinez, A.F. Barajas-Solano, Cultivation of Chlorella vulgaris in Aquaculture Wastewater for Protein Production, Contemporary Engineering Sciences, 11 (2018), no. 2, 93–100. https://doi.org/10.12988/ces.2018.712203spa
dcterms.referencesL. Torres-Carvajal, A. González-Delgado, A. Barajas-Solano, Nestor Andres Urbina-Suarez, The Effects of Wavelength and Salinity on Biomass Production from Haematococcus pluvialis, Contemporary Engineering Sciences, 10 (2017), 1693–1700. https://doi.org/10.12988/ces.2017.711192spa
dcterms.referencesL.K. Torres-carvajal, Á.D. González-Delgado, A. Barajas-Solano, J.H. Suarez-Gelvez, N.A. Urbina-Suarez, Astaxanthin Production from Haematococcus pluvialis: Effects of Light Wavelength and Salinity, Contemporary Engineering Sciences, 10 (2017), 1739–1746. https://doi.org/10.12988/ces.2017.711196spa
dcterms.referencesW-H. Chen, Y-S. Chu, J-L. Liu, Jo-Shu Chang, Thermal degradation of carbohydrates, proteins and lipids in microalgae analyzed by evolutionary computation, Energy Conversion and Management, 160 (2018), 209–219. https://doi.org/10.1016/j.enconman.2018.01.036spa
dcterms.referencesA.L. Lupatini, L. de Oliveira Bispo, L.M. Colla, Jorge Alberto Vieira Costa, Cristiane Canan, Eliane Colla, Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation, Food Research International, 99 (2017), 1028–1035. https://doi.org/10.1016/j.foodres.2016.11.036spa
dcterms.referencesS. Khanra, M. Mondal, G. Halder, O.N. Tiwari, Kalyan Gayen, Tridib Kumar Bhowmick, Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review, Food and Bioproducts Processing, (2018). In Press https://doi.org/10.1016/j.fbp.2018.02.002spa
dcterms.referencesC.Y. Chen, X.Q. Zhao, H.W. Yen, Shih-Hsin Ho, Chieh-Lun Cheng, DuuJong Lee, Feng-Wu Bai, Jo-Shu Chang, Microalgae-based carbohydrates for biofuel production, Biochemical Engineering Journal, 78 (2013), 1–10. https://doi.org/10.1016/j.bej.2013.03.006spa
dcterms.referencesJ. Roux, H. Lamotte, J. Achard, An Overview of Microalgae Lipid Extraction in a Biorefinery Framework, Energy Procedia, 112 (2017), 680–688. https://doi.org/10.1016/j.egypro.2017.03.1137spa
dcterms.referencesÁ.D. González-Delgado, J. García-Martínez, Y.Y. Peralta-Ruíz, Cell Disruption and Lipid Extraction from Microalgae Amphiprora sp . Using Acid Hydrolysis- Solvent Extraction Route, Contemporary Engineering Sciences, 10 (2017), 841–849. https://doi.org/10.12988/ces.2017.78791spa
dcterms.referencesÁ. González-Delgado, J. García-Martínez, Y.Y. Peralta-Ruíz, Evaluation of Two Pre-Treatments for Improving Lipid Extraction from Microalgae Navicula sp., Contemporary Engineering Sciences, 10 (2017), 851–859. https://doi.org/10.12988/ces.2017.78792spa
dcterms.referencesM. Chang, D. Li, W. Wang, Dongchu Chen, Yuyuan Zhang, Huawen Hu, Xiufang Ye, Comparison of sodium hydroxide and calcium hydroxide pretreatments on the enzymatic hydrolysis and lignin recovery of sugarcane bagasse, Bioresource Technology, 244 (2017), 1055–1058.spa
dcterms.referencesM. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric Method for Determination of Sugars and Related Substances, Analytical Chemistry, 28 (1956), 350–356. https://doi.org/10.1021/ac60111a017spa
dcterms.referencesO.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the Folin phenol reagent, The Journal of Biolical Chemistry, 193 (1951), 265–275.spa
dcterms.referencesR. Robert, R-M. Knuckey, D-M-F. Frampton, M-R. Brown, Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds, Aquacultural Engineering, 35 (2006), 300–313. https://doi.org/10.1016/j.aquaeng.2006.04.001spa
dcterms.referencesM.R. Talukder, P. Das, J.C. Wu, Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid, Biochemical Engineering Journal, 68 (2012), 109–113. https://doi.org/10.1016/j.bej.2012.07.001spa
dcterms.referencesS. Bellou, G. Aggelis, Biochemical activities in Chlorella sp. And Nannochloropsis salina during lipid and sugar synthesis in a lab-acale open pond simulating reactor, Journal of Biotechnology, 164 (2013), 318–329. https://doi.org/10.1016/j.jbiotec.2013.01.010spa
dcterms.referencesS. Cuellar-Bermudez, I. Aguilar-Hernandez, D. Cardenas-Chavez, N. Ornelas-Soto, M. Romero-Ogawa and Roberto Parra-Saldivar, Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins, Microbial Biotechnology, 8 (2014), 190– 209. https://doi.org/10.1111/1751-7915.12167spa
dc.identifier.doi10.12988/ces.2018.8240
dc.publisher.placeBulgariaspa
dc.relation.citationeditionVol. 11, No. 14 (2018)spa
dc.relation.citationendpage677spa
dc.relation.citationissue14 (2018)spa
dc.relation.citationstartpage669spa
dc.relation.citationvolume11spa
dc.relation.citesSanguino-Barajas, P. A., Gonzalez-Delgado, A. D. y Barajas-Solano, A. F. (2018). Improvement of biorefinery efficiency for microalgae Nannochloropsis sp. via harvesting technology evaluation. Contemporary Engineering Sciences, 11(14), 669–677. https://doi.org/10.12988/ces.2018.8240
dc.relation.ispartofjournalContemporary Engineering Sciencesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalHarvestingeng
dc.subject.proposalMetaboliteseng
dc.subject.proposalBiomasseng
dc.subject.proposalMicroalgaeeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem