dc.contributor.author | Sanguino, Paola Andrea | |
dc.contributor.author | González-Delgado, Angel Darío | |
dc.contributor.author | Barajas Solano, andres F | |
dc.date.accessioned | 2021-12-01T00:39:37Z | |
dc.date.available | 2021-12-01T00:39:37Z | |
dc.date.issued | 2018-04-04 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1603 | |
dc.description.abstract | Recently, microalgal biomass has attached much attention due to the wide diversity
of compounds synthesized from different metabolic pathways. This work attempts
to study metabolites recovery from Nannochloropsis sp. biomass concentrated by
centrifugation and flocculation. Carbohydrates were obtained using acid and
alkaline hydrolysis required for cell disruption. Protein extraction was performed
after alkaline pretreatment and lipids were recovery by acid hydrolysis- Soxhlet and
alkaline hydrolysis- Soxhlet extraction routes. It was found that carbohydrates were
recovered by acid hydrolysis in 41 % and 35.39 % for centrifuged and flocculated
biomass, respectively, values higher than thus reported using alkaline hydrolysis.
For protein extraction, centrifuged biomass exhibited higher recovery yield
(55.48%) than flocculated biomass (38.40%). The lipid extraction route that
achieved highest yield (43.45%) was acid hydrolysis with HCl followed by Soxhlet
extraction with hexane. In addition, statistical analysis by T test suggested that
flocculants affect negatively biomass culture, hence, efficiency of metabolites
extraction. | eng |
dc.format.extent | 9 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Contemporary Engineering Sciences | spa |
dc.relation.ispartof | Contemporary Engineering Sciences ISSN: 1314-7641, 2018 vol:11 fasc: 14 págs: 669 - 677 | |
dc.rights | 2018 P.A. Sanguino-Barajas et al. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | eng |
dc.source | http://www.m-hikari.com/ces/ces2018/ces13-16-2018/8240.html | spa |
dc.title | Improvement of Biorefinery Efficiency for Microalgae Nannochloropsis sp. via Harvesting Technology Evaluation | eng |
dc.type | Artículo de revista | spa |
dcterms.references | R. Sathasivam, R. Radhakrishnan, A. Hashem Elsayed F. Abd_Allah, Microalgae metabolites : A rich source for food and medicine, Saudi Journal of Biological Sciences, (2017). In Press https://doi.org/10.1016/j.sjbs.2017.11.003 | spa |
dcterms.references | B. Serive, R. Kaas, J. Bérard, Virginie Pasquet, Laurent Picot, Jean-Paul Cadoret, Selection and optimisation of a method for efficient metabolites extraction from microalgae, Bioresource Technology, 124 (2012), 311–320. https://doi.org/10.1016/j.biortech.2012.07.105 | spa |
dcterms.references | F. Ahmad, S. Kumar, N. Mahmoud, Ismail Rawat, Faizal Bux, Evaluation of various cell drying and disruption techniques for sustainable metabolite extractions from microalgae grown in wastewater: A multivariate approach, Journal of Cleaner Production, 182 (2018), 634–643. https://doi.org/10.1016/j.jclepro.2018.02.098 | spa |
dcterms.references | E. Blanco-Carvajal, E. Sánchez-Galvis, Á.D. González-Delgado, J.B. Garcia Martinez, A.F. Barajas-Solano, Cultivation of Chlorella vulgaris in Aquaculture Wastewater for Protein Production, Contemporary Engineering Sciences, 11 (2018), no. 2, 93–100. https://doi.org/10.12988/ces.2018.712203 | spa |
dcterms.references | L. Torres-Carvajal, A. González-Delgado, A. Barajas-Solano, Nestor Andres Urbina-Suarez, The Effects of Wavelength and Salinity on Biomass Production from Haematococcus pluvialis, Contemporary Engineering Sciences, 10 (2017), 1693–1700. https://doi.org/10.12988/ces.2017.711192 | spa |
dcterms.references | L.K. Torres-carvajal, Á.D. González-Delgado, A. Barajas-Solano, J.H. Suarez-Gelvez, N.A. Urbina-Suarez, Astaxanthin Production from Haematococcus pluvialis: Effects of Light Wavelength and Salinity, Contemporary Engineering Sciences, 10 (2017), 1739–1746. https://doi.org/10.12988/ces.2017.711196 | spa |
dcterms.references | W-H. Chen, Y-S. Chu, J-L. Liu, Jo-Shu Chang, Thermal degradation of carbohydrates, proteins and lipids in microalgae analyzed by evolutionary computation, Energy Conversion and Management, 160 (2018), 209–219. https://doi.org/10.1016/j.enconman.2018.01.036 | spa |
dcterms.references | A.L. Lupatini, L. de Oliveira Bispo, L.M. Colla, Jorge Alberto Vieira Costa, Cristiane Canan, Eliane Colla, Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation, Food Research International, 99 (2017), 1028–1035. https://doi.org/10.1016/j.foodres.2016.11.036 | spa |
dcterms.references | S. Khanra, M. Mondal, G. Halder, O.N. Tiwari, Kalyan Gayen, Tridib Kumar Bhowmick, Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review, Food and Bioproducts Processing, (2018). In Press https://doi.org/10.1016/j.fbp.2018.02.002 | spa |
dcterms.references | C.Y. Chen, X.Q. Zhao, H.W. Yen, Shih-Hsin Ho, Chieh-Lun Cheng, DuuJong Lee, Feng-Wu Bai, Jo-Shu Chang, Microalgae-based carbohydrates for biofuel production, Biochemical Engineering Journal, 78 (2013), 1–10. https://doi.org/10.1016/j.bej.2013.03.006 | spa |
dcterms.references | J. Roux, H. Lamotte, J. Achard, An Overview of Microalgae Lipid Extraction in a Biorefinery Framework, Energy Procedia, 112 (2017), 680–688. https://doi.org/10.1016/j.egypro.2017.03.1137 | spa |
dcterms.references | Á.D. González-Delgado, J. García-Martínez, Y.Y. Peralta-Ruíz, Cell Disruption and Lipid Extraction from Microalgae Amphiprora sp . Using Acid Hydrolysis- Solvent Extraction Route, Contemporary Engineering Sciences, 10 (2017), 841–849. https://doi.org/10.12988/ces.2017.78791 | spa |
dcterms.references | Á. González-Delgado, J. García-Martínez, Y.Y. Peralta-Ruíz, Evaluation of Two Pre-Treatments for Improving Lipid Extraction from Microalgae Navicula sp., Contemporary Engineering Sciences, 10 (2017), 851–859. https://doi.org/10.12988/ces.2017.78792 | spa |
dcterms.references | M. Chang, D. Li, W. Wang, Dongchu Chen, Yuyuan Zhang, Huawen Hu, Xiufang Ye, Comparison of sodium hydroxide and calcium hydroxide pretreatments on the enzymatic hydrolysis and lignin recovery of sugarcane bagasse, Bioresource Technology, 244 (2017), 1055–1058. | spa |
dcterms.references | M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric Method for Determination of Sugars and Related Substances, Analytical Chemistry, 28 (1956), 350–356. https://doi.org/10.1021/ac60111a017 | spa |
dcterms.references | O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the Folin phenol reagent, The Journal of Biolical Chemistry, 193 (1951), 265–275. | spa |
dcterms.references | R. Robert, R-M. Knuckey, D-M-F. Frampton, M-R. Brown, Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds, Aquacultural Engineering, 35 (2006), 300–313. https://doi.org/10.1016/j.aquaeng.2006.04.001 | spa |
dcterms.references | M.R. Talukder, P. Das, J.C. Wu, Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid, Biochemical Engineering Journal, 68 (2012), 109–113. https://doi.org/10.1016/j.bej.2012.07.001 | spa |
dcterms.references | S. Bellou, G. Aggelis, Biochemical activities in Chlorella sp. And Nannochloropsis salina during lipid and sugar synthesis in a lab-acale open pond simulating reactor, Journal of Biotechnology, 164 (2013), 318–329. https://doi.org/10.1016/j.jbiotec.2013.01.010 | spa |
dcterms.references | S. Cuellar-Bermudez, I. Aguilar-Hernandez, D. Cardenas-Chavez, N. Ornelas-Soto, M. Romero-Ogawa and Roberto Parra-Saldivar, Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins, Microbial Biotechnology, 8 (2014), 190– 209. https://doi.org/10.1111/1751-7915.12167 | spa |
dc.identifier.doi | 10.12988/ces.2018.8240 | |
dc.publisher.place | Bulgaria | spa |
dc.relation.citationedition | Vol. 11, No. 14 (2018) | spa |
dc.relation.citationendpage | 677 | spa |
dc.relation.citationissue | 14 (2018) | spa |
dc.relation.citationstartpage | 669 | spa |
dc.relation.citationvolume | 11 | spa |
dc.relation.cites | Sanguino-Barajas, P. A., Gonzalez-Delgado, A. D. y Barajas-Solano, A. F. (2018). Improvement of biorefinery efficiency for microalgae Nannochloropsis sp. via harvesting technology evaluation. Contemporary Engineering Sciences, 11(14), 669–677. https://doi.org/10.12988/ces.2018.8240 | |
dc.relation.ispartofjournal | Contemporary Engineering Sciences | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | Harvesting | eng |
dc.subject.proposal | Metabolites | eng |
dc.subject.proposal | Biomass | eng |
dc.subject.proposal | Microalgae | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |