Mostrar el registro sencillo del ítem

dc.contributor.authorBlanco, Estefany
dc.contributor.authorSanchez-Galvis, Edwar
dc.contributor.authorGonzález-Delgado, Angel Darío
dc.contributor.authorGarcía-Martinez, Janet
dc.contributor.authorBarajas Solano, andres F
dc.date.accessioned2021-11-30T23:12:14Z
dc.date.available2021-11-30T23:12:14Z
dc.date.issued2018-02-02
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1600
dc.description.abstractMicroalgae have emerged as environment friendly alternative source of valuable products for energy, pharmaceutical and cosmetic industries. These microorganisms have been also studied in wastewater treatments due to its ability to remove CO2, nitrogen, phosphorus, and toxic metals. In this work, cultivation of microalgae Chlorella vulgaris was carried out in aquaculture wastewater in order to reduce its contents of NO3 and PO4. In addition, different concentration of inorganic carbon sources (NaHCO3 and Na2CO3) and addition times were considered for determining suitable conditions in microalgae culture to produce proteins. It was found that highest protein content (45 % w/w) was achieved at 3.4 g/L of NaHCO3 and 19 h of addition time.eng
dc.format.extent8 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherContemporary Engineering Sciencesspa
dc.relation.ispartofContemporary Engineering Sciences ISSN: 1313-6569, 2018 vol:11 fasc: n/A págs: 93 - 100
dc.rights2018 Estefany Blanco-Carvajal, Eduar Sanchez-Galvis, Angel Dario Gonzalez-Delgado, Janet Bibiana Garcia Martinez and Andres Fernando Barajas-Solano. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.eng
dc.sourcehttp://www.m-hikari.com/ces/ces2018/ces1-4-2018/p/gonzalezCES1-4-2018.pdfspa
dc.titleCultivation of Chlorella vulgaris in Aquaculture Wastewater for Protein Productioneng
dc.typeArtículo de revistaspa
dcterms.referencesA. Gonçalves, J. Pires, M. Simões, A review on the use of microalgal consortia for wastewater treatment, Algal Research, 24 (2017), 403–415. https://doi.org/10.1016/j.algal.2016.11.008spa
dcterms.referencesA. Farhan, M. Udaiyappan, H. Abu, Mohd Sobri Takriff, Siti Rozaimah Sheikh Abdullah, A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment, Journal of Water Process Engineering, 20 (2017), 8–21. https://doi.org/10.1016/j.jwpe.2017.09.006spa
dcterms.referencesA. Guldhe, F. Ansari, P. Singh, F. Bux, Heterotrophic cultivation of microalgae using aquaculture wastewater : A biorefinery concept for biomass production and nutrient remediation, Ecological Engineering, 99 (2017), 47– 53. https://doi.org/10.1016/j.ecoleng.2016.11.013spa
dcterms.referencesY. Wang, S-H. Ho, C-L. Cheng, W.-Q. Guo, D. Nagarajan, N.-Q.Ren, DuuJong Lee, Jo-Shu Chang, Perspectives on the feasibility of using microalgae for industrial wastewater treatment, Bioresource Technology, 222 (2016), 485–497. https://doi.org/10.1016/j.biortech.2016.09.106spa
dcterms.referencesÁ. D. González-Delgado, J. B. García-Martínez, Y. Y. Peralta-Ruíz, Cell Disruption and Lipid Extraction from Microalgae Amphiprora sp. Using Acid Hydrolysis- Solvent Extraction Route, Contemporary Engineering Sciences, 10 (2017), 841–849. https://doi.org/10.12988/ces.2017.78791spa
dcterms.referencesÁ. D. González-Delgado, A. F. Barajas-Solano, Y.Y. Peralta-Ruíz, Evaluation of In-Situ Transient Simultaneous Cell Disruption and Transesterification of Microalgae, Contemporary Engineering Sciences, 10 (2017), 1319–1327. https://doi.org/10.12988/ces.2017.710143spa
dcterms.referencesS. Kang, A. Suresh, Yeu-Chun Kim, A highly efficient cell penetrating peptide pVEC-mediated protein delivery system into microalgae, Algal Research, 24 (2017), 360–367. https://doi.org/10.1016/j.algal.2017.04.022spa
dcterms.referencesR. Zhang, J. Chen, X. Zhang, Extraction of intracellular protein from Chlorella pyrenoidosa using a combination of ethanol soaking, enzyme digest, ultrasonication and homogenization techniques, Bioresource Technology, 247 (2018), 267–272. https://doi.org/10.1016/j.biortech.2017.09.087spa
dcterms.referencesL. Grossmann, S. Ebert, J. Hinrichs, J. Weiss, Effect of precipitation, lyophilization , and organic solvent extraction on preparation of protein-rich powders from the microalgae Chlorella protothecoides, Algal Research, 29 (2018), 266–276. https://doi.org/10.1016/j.algal.2017.11.019spa
dcterms.referencesÁ. D. González-Delgado, Y. Y. Peralta-Ruíz, Thermodynamic Modeling of Microalgae Oil Extraction Using Supercritical Fluids, Contemporary Engineering Sciences, 10 (2017), 503–511. https://doi.org/10.12988/ces.2017.7334spa
dcterms.referencesC. Ejike, S.A. Collins, N. Balasuriya, Andrew K. Swanson, B. Mason, Chibuike C. Udenigwe, Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health, Trends in Food Science & Technology, 59 (2017), 30–36. https://doi.org/10.1016/j.tifs.2016.10.026spa
dcterms.referencesW. Nee, P. Loke, W. Heng, Tiong Xin Teh, Hilary Mae Yan Lim, Nurul Shafira binti Nazri, Chung Hong Tan, Jo-Shu Chang, Tau Chuan Ling, Proteins recovery from wet microalgae using liquid biphasic flotation (LBF), Bioresource Technology, 244 (2017), 1329–1336. https://doi.org/10.1016/j.biortech.2017.05.165spa
dcterms.referencesR. Andersen, Algal Culturing Techniques, London: Elsevier Academic Press, 2005.spa
dcterms.referencesM. Borowitzka, N. Moheimani, Total protein determination methods, Algae for Biofuels and Energy, 2011, 274–283.spa
dc.identifier.doi10.12988/ces.2018.712203
dc.publisher.placeColombiaspa
dc.relation.citationeditionVol. 11, No. 2 (2018)spa
dc.relation.citationendpage100spa
dc.relation.citationissue2 (2018)spa
dc.relation.citationstartpage93spa
dc.relation.citationvolume11spa
dc.relation.citesBlanco-Carvajal, E., Sanchez-Galvis, E., Gonzalez-Delgado, A. D., Garcia Martinez, J. B. y Barajas-Solano, A. F. (2018). Cultivation of Chlorella vulgaris in aquaculture wastewater for protein production. Contemporary Engineering Sciences, 11(2), 93–100. https://doi.org/10.12988/ces.2018.712203
dc.relation.ispartofjournalContemporary Engineering Sciencesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalMicroalgaeeng
dc.subject.proposalGrowtheng
dc.subject.proposalProteineng
dc.subject.proposalTreatmenteng
dc.subject.proposalWastewatereng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem