Mostrar el registro sencillo del ítem
Evaluation of the effect of flocculation on harvesting of microalgaenannochloropsis SP
dc.contributor.author | ZUORRO, Antonio | |
dc.contributor.author | Barajas Solano, andres F | |
dc.contributor.author | Mena, Nelson Osvaldo | |
dc.contributor.author | González-Delgado, Angel Darío | |
dc.contributor.author | Ortegón, Manuel Alejandro | |
dc.contributor.author | Sanguino, Paola Andrea | |
dc.contributor.author | Lavecchia, Roberto | |
dc.date.accessioned | 2021-11-30T20:57:46Z | |
dc.date.available | 2021-11-30T20:57:46Z | |
dc.date.issued | 2018-08 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1588 | |
dc.description.abstract | Microalgae have recently emerged as an attractive source of products for the food, energy and pharmaceutical industries due to their high biomass productivity, metabolic versatility and environmental sustainability. This work focuses on the effect of flocculation on the harvesting of microalgae Nannochloropsissp. Through a three-factor experimental design. The most suitable conditions for flocculation were determined based on flocculant (AlCl3) dosage, pH and culture time. In addition, flocculant adding-pH adjustment methods were studied and harvesting was performed according to the method that provided the best results. The pH adjustment after flocculant addition showed higher flocculation efficiency (above 90%) compared to the reverse process. It was also found that the microalgae cells exhibited spontaneous sedimentation, suggesting that the use of flocculant is not required for biomass collection. | eng |
dc.format.extent | 5 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | ARPN Journal of Engineering and Applied Sciences | spa |
dc.relation.ispartof | ARPN Journal of Engineering and Applied Sciences ISSN: 1819-6608, 2018 vol:13 fasc: 15 págs: 4475 - 4479 | |
dc.rights | 2006-2018 Asian Research Publishing Network (ARPN). All rights reserved. | eng |
dc.source | http://www.arpnjournals.org/jeas/research_papers/rp_2018/jeas_0818_7227.pdf | spa |
dc.title | Evaluation of the effect of flocculation on harvesting of microalgaenannochloropsis SP | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Borges L., Morón–Villarreyes J., Montes D’Oca M. & Abreu P. 2011. Effects of flocculants on lipid extraction and fatty acid composition of the microalgae Nannochloropsisoculata and Thalassiosiraweissflogii. Biomass and Bioenergy. 31, 4449-4454. | spa |
dcterms.references | Brasil B.S.A., Silva F.C.P. & Siqueira F.G. 2016. Microalgae biorefineries: The Brazilian scenario in perspective. New Biotechnology. | spa |
dcterms.references | Chatsungnoen T.& Chisti Y. 2016. Harvesting microalgae by flocculation-sedimentation. Algal Research. 13, 271- 283. | spa |
dcterms.references | Chen Y., Liu J.&Yih-Hsu J. 1998. Flotation removal of algae from water. Colloids and Surfaces. Biointerfaces. 12, 49-55 | spa |
dcterms.references | Collotta M., Champagne P., Mabee W., Tomasoni G., Gustavo B., Busi L. &Alberti M. 2017. Comparative LCA of flocculation for the harvesting of microalgae for biofuels production. Procedia CIRP. 61, 756-760. | spa |
dcterms.references | El-Mekkawi S.A., El-Ardy O.A., Abdelmonem N.M.& Elahwany A.H. 2016. A scope on microalgae as potential source of biofuel. ARPN Journal of Engineering and Applied Sciences. 11(19): 11421-11432. | spa |
dcterms.references | Garzon-Sanabria A.J., Ramirez-Caballero S.S., Moss F.E.P.&Nikolov Z.L. 2013. Effect of algogenic organic matter (AOM) and sodium chloride on Nannochloropsissalina flocculation efficiency. Bioresource Technology. 143, 231-237. | spa |
dcterms.references | Garzón-Sanabria A.J., Davis R.T.& Nikolov N.L. 2012. Harvesting Nannochlorisoculata by inorganic electrolyte flocculation: Effect of initial cell density, ionic strength, coagulant dosage, and media pH. Bioresource Technology. 118, 418-424. | spa |
dcterms.references | Kalidasan B., Srinivas T.& Shankar R. 2015. Experimental study on power generation using biomass based and solar based brayton cycles. ARPN Journal of Engineering and Applied Sciences. 10(9): 3987-3990. | spa |
dcterms.references | Kim D., Lee K., Lee J., Lee Y., Han J., Park J. & Oh Y. 2017. Acidified-flocculation process for harvesting of microalgae: Coagulant reutilization and metal-freemicroalgae recovery. Bioresource Technology. 239, 190- 196. | spa |
dcterms.references | Knuckey R., Brown M., Robert R. & Frampton D. 2006. Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Agricultural Engineering. 35, 300-313. | spa |
dcterms.references | Maffei G., Bracciale M.P., Broggi A., Zuorro A., Santarelli M.L.&Lavecchia R. 2018. Effect of an enzymatic treatment with cellulase and mannanase on the structural properties of Nannochloropsis microalgae.Bioresource Technology. 249, 592-598. | spa |
dcterms.references | Roselet F., Burkert J. & Cesar P. 2016. Flocculation of Nannochloropsisoculata using a tannin-based polymer: Bench scale optimization and pilot scale reproducibility. Biomass and Bioenergy. 87, 55-60. | spa |
dcterms.references | Rwehumbiza M.V., Harrison R. & Thomsen L. 2012. Alum-induced flocculation of preconcentratedNannochloropsissalina: Residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling. Chemical Engineering Journal. 200-202, 168-175. | spa |
dcterms.references | Sadegh M., Shariati A., Badakhshan A. &Anvaripour B. 2013. Using nano-chitosan for harvesting microalga Nannochloropsis sp. Bioresource Technology. 131, 555- 559. | spa |
dcterms.references | Sari A.M.&Purnawan I. 2016. The influence of chitosan flocculant on the flocculation of microalgae Chlorella sp. ARPN Journal of Engineering and Applied Sciences. 11(8): 5177-5182. | spa |
dcterms.references | Sathasivam R., Radhakrishnan R., Hashem A. &Abd E. F. 2017. Microalgae metabolites : A rich source for food and medicine. Saudi Journal of Biological Sciences. | spa |
dcterms.references | Sunar N.M., Matias-Peralta H., Aziz A.&Latiff A. 2016. Screening of sustainable hydrocarbon extracted from microalgae via phycoremediation. ARPN Journal of Engineering and Applied Sciences. 11(12): 7431-7436. | spa |
dcterms.references | Uduman N., Danquah Q.Y., Forde M.&Hoadley A. 2010. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. Renewable and Sustainable Energy Reviews. 127011-127015. | spa |
dcterms.references | Wan C., Zhao X., Guo S., Alam A. & Bai F. 2013. Bioflocculant production from Solibacillussilvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsisoceanica by flocculation. Bioresource Technology. 135, 207-212. | spa |
dcterms.references | Zakariah N.A., Rahman N.A., Raikhan N.& Him N. 2017. Effects of nitrogen supplementation in replete condition on the biomass yield and microalgae. ARPN Journal of Engineering and Applied Sciences. 12(10): 3290-3298. | spa |
dcterms.references | Zhang Y., Tian J., Nan J., Gao S., Liang H., Wang M. & Li G. 2010. Effect of PAC addition on immersed ultrafiltration for the treatment of algal-rich water. Journal of Hazardous Materials. 186, 1415-1424. | spa |
dcterms.references | Zuorro A., Maffei G.&Lavecchia R. 2016ª. Optimization of enzyme-assisted lipid extraction from Nannochloropsis microalgae. Journal of the Taiwan Institute of Chemical Engineers. 67, 106-114. | spa |
dcterms.references | Zuorro A., Miglietta S., Familiari G.&Lavecchia R. 2016b. Enhanced lipid recovery from Nannochloropsis microalgae by treatment with optimized cell wall degrading enzyme mixtures. BioresourceTechnology. 212, 35-41. | spa |
dc.relation.citationedition | Vol. 13, No. 15 (2018) | spa |
dc.relation.citationendpage | 4479 | spa |
dc.relation.citationissue | 15 (2018) | spa |
dc.relation.citationstartpage | 4475 | spa |
dc.relation.citationvolume | 13 | spa |
dc.relation.cites | Mena López, N. O., Ortegón Díaz, M. A., González Delgado, Á. D., Sanguino Barajas, P. A., Barajas Solano, A. F., Lavecchia, R. y Zuorro, A. (2018). Evaluation of the effect of flocculation on harvesting of microalgaenannochloropsis SP. ARPN Journal of Engineering and Applied Sciences, 13(15), 4475–4479. http://www.arpnjournals.org/jeas/research_papers/rp_2018/jeas_0818_7227.pdf | |
dc.relation.ispartofjournal | ARPN Journal of Engineering and Applied Sciences | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.subject.proposal | Microalgae | eng |
dc.subject.proposal | Harvesting | eng |
dc.subject.proposal | Flocculation | eng |
dc.subject.proposal | Sedimentation | eng |
dc.subject.proposal | pH | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Ambiente y Vida - GIAV [124]