Mostrar el registro sencillo del ítem
Recognition of the driving style in vehicle drivers
dc.contributor.author | Cordero, Jorge | |
dc.contributor.author | Aguilar, Kristell | |
dc.contributor.author | Chávez, Danilo | |
dc.contributor.author | Puerto, Eduard | |
dc.contributor.author | Aguilar, Jose | |
dc.date.accessioned | 2021-11-30T16:59:21Z | |
dc.date.available | 2021-11-30T16:59:21Z | |
dc.date.issued | 2020-05-02 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1576 | |
dc.description.abstract | This paper presents three different approaches to recognize driving style based on a hierarchical-model. Specifically, it proposes a hierarchical model for the recognition of the driving style for advanced driver-assistance systems (ADAS) for vehicles. This hierarchical model for the recognition of the style of the car driving considers three aspects: the driver emotions, the driver state, and finally, the driving style itself. In this way, the proposed hierarchical pattern is composed of three levels of descriptors/features, one to recognize the emotional states, another to recognize the driver state, and the last one to recognize the driving style. Each level has a set of descriptors, which can be sensed in a real context. Finally, the paper presents three driving style recognition algorithms based on different paradigms. One is based on fuzzy logic, another is based on chronicles (a temporal logic paradigm), and the last is based on an algorithm that uses the idea of the recognition process of the neocortex, called Ar2p (Algoritmo Recursivo de Reconocimiento de Patrones, for its acronym in Spanish). In the paper, these approaches are compared using real datasets, using different metrics of interest in the context of the Internet of the Things, in order to determine their capabilities of reasoning, adaptation, and the communication of information. In general, the initial results are encouraging, specifically in the cases of chronicles and Ar2p, which give the best results. | eng |
dc.format.extent | 28 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Sensors | spa |
dc.relation.ispartof | Sensors | |
dc.rights | © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). | eng |
dc.source | https://www.mdpi.com/1424-8220/20/9/2597 | spa |
dc.title | Recognition of the driving style in vehicle drivers | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Katsis, C.D.; Rigas, G.; Goletsis, Y.; Fotiadis, D.I. Emotion recognition in car industry. In Emotion Recognition: A Pattern Analysis Approach; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 515–544. | spa |
dcterms.references | Kuderer, M.; Gulati, S.; Burgard, W. Learning driving styles for autonomous vehicles from demonstration. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2641–2646. | spa |
dcterms.references | Enev, M.; Takakuwa, A.; Koscher, K.; Kohno, T. Automobile driver fingerprinting. Proc. Priv. Enhancing Technol. 2016, 2016, 34–50. | spa |
dcterms.references | Tigadi, A.; Gujanatti, R.; Gonchi, A.; Klemsscet, B. Advanced driver assistance systems. Int. J. Eng. Res. Gen. Sci. 2016, 4, 151–158. | spa |
dcterms.references | Wang, J.; Zhang, L.; Zhang, D.; Li, K. An adaptive longitudinal driving assistance system based on driver characteristics. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1–12. | spa |
dcterms.references | Aguilar, J.; Aguilar, K.; Chávez, D.; Cordero, J.; Puerto, E. Different Intelligent Approaches for Modeling the Style of Car Driving. In Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Madrid, Spain, 26–28 July 2017. | spa |
dcterms.references | Lin, N.; Zong, C.; Tomizuka, M.; Song, P.; Zhang, Z.; Li, G. An overview on study of identification of driver behavior characteristics for automotive control. Math. Probl. Eng. 2014, 2014, 569109. | spa |
dcterms.references | Jeon, M.; Walker, B.N.; Yim, J.-B. Effects of specific emotions on subjective judgment, driving performance, and perceived workload. Transp. Res. Part. F Traffic Psychol. Behav. 2014, 24, 197–209. | spa |
dcterms.references | Roidl, E.; Frehse, B.; Höger, R. Emotional states of drivers and the impact on speed, acceleration and traffic violations—A simulator study. Accid. Anal. Prev. 2014, 70, 282–292. | spa |
dcterms.references | Aguilar, J.; Chavez, D.; Cordero, J. A Dynamic Recognition Approach of Emotional States for Car Drivers. In Proceedings of the International Conference on Technologies and Innovation, Guayaquil, Ecuador, 23–25 November 2016; pp. 155–168. | spa |
dcterms.references | Moon, S.; Moon, I.; Yi, K. Design, tuning, and evaluation of a full-range adaptive cruise control system with collision avoidance. Control. Eng. Prac. 2009, 17, 442–455. | spa |
dcterms.references | Tawari, A.; Trivedi, M. Speech based emotion classification framework for driver assistance system. In Proceedings of the 2010 IEEE Intelligent Vehicles Symposium, La Jolla, CA, USA, 21–24 June 2010; pp. 174–178. | spa |
dcterms.references | Chavez, D.; Slawinski, E.; Mut, V. Collaborater for a Car-Like Vehicle Driven by a User with Visual Inattention. Asian J. Control. 2013, 15, 177–192. | spa |
dcterms.references | Slawiñski, E.; Mut, V.; Penizzotto, F. Sistema de Alerta al Conductor Basado en Realimentación Vibro-Táctil. Rev. Iberoam. Automática E Inf. Ind. 2015, 12, 36–48. | spa |
dcterms.references | Guoying, C.; Danpan, W. Study on Identification of Driver Steering Behavior Characteristics Based on Pattern Recognition. Int. Rob. Auto. J. 2016, 1, 5. | spa |
dcterms.references | Wang, W.; Xi, J. A rapid pattern-recognition method for driving styles using clustering-based support vector machines. In Proceedings of the American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 5270–5275. | spa |
dcterms.references | Lau, C. Emotional Driving: Examining How Mood-Valence Affects Driving Performance. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2016. | spa |
dcterms.references | Kamaruddin, N.; Wahab, A.; Abut, H. Driver emotion profiling from speech. In Digital Signal Processing for In-Vehicle Systems and Safety; Springer: Berlin/Heidelberg, Germany, 2012; pp. 21–29. | spa |
dcterms.references | Dörr, D.; Grabengiesser, D.; Gauterin, F. Online driving style recognition using fuzzy logic. In Proceedings of the 17th International Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 1021–1026. | spa |
dcterms.references | Dong, W.; Li, J.; Yao, R.; Li, C.; Yuan, T.; Wang, L. Characterizing Driving Styles with Deep Learning. arXiv 2016, arXiv:1607.03611. | spa |
dcterms.references | Kolli, A.; Fasih, A.; Al Machot, F.; Kyamakya, K. Non-intrusive car driver’s emotion recognition using thermal camera. In Proceedings of the Joint 3rd Int’l Workshop on Nonlinear Dynamics and Synchronization (INDS) & 16th Int’l Symposium on Theoretical Electrical Engineering, Klagenfurt am Wörthersee, Austria, 25–27 July 2011; pp. 1–5. | spa |
dcterms.references | Lisetti, C.L.; Nasoz, F. Affective intelligent car interfaces with emotion recognition. In Proceedings of the 11th International Conference on Human Computer Interaction, Las Vegas, NV, USA, 22–27 July 2005. | spa |
dcterms.references | Eyben, F.; Wöllmer, M.; Poitschke, T.; Schuller, B.; Blaschke, C.; Färber, B.; Nguyen-Thien, N. Emotion on the road—Necessity, acceptance, and feasibility of affective computing in the car. Adv. Hum. Comput. Interact. 2010. | spa |
dcterms.references | Kessous, L.; Castellano, G.; Caridakis, G. Multimodal emotion recognition in speech-based interaction using facial expression, body gesture and acoustic analysis. J. Multimodal User Interfaces 2010, 3, 33–48. | spa |
dcterms.references | Paschero, M.; Del Vescovo, G.; Benucci, L.; Rizzi, A.; Santello, M.; Fabbri, G.; Mascioli, F.M.F. A real time classifier for emotion and stress recognition in a vehicle driver. In Proceedings of the Industrial Electronics (ISIE), 2012 IEEE International Symposium on Industrial Electronics, Hangzhou, China, 28–31 May 2012; pp. 1690–1695. | spa |
dcterms.references | Miller, G.; Taubman-Ben-Ari, O. Driving styles among young novice drivers—The contribution of parental driving styles and personal characteristics. Accid. Anal. Prev. 2010, 42, 558–570. | spa |
dcterms.references | Taubman-Ben-Ari, O.; Yehiel, D. Driving styles and their associations with personality and motivation. Accid. Anal. Prev. 2012, 45, 416–422. | spa |
dcterms.references | Ekman, P.; Friesen, W.V. Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 1971, 17, 124. | spa |
dcterms.references | Nasoz, F.; Lisetti, C.L.; Vasilakos, A.V. Affectively intelligent and adaptive car interfaces. Inf. Sci. 2010, 180, 3817–3836. | spa |
dcterms.references | Aguilar, J. Temporal Logic from the Chronicles Paradigm: Learning and Reasoning Problems, and Its Applications in Distributed Systems; LAP LAMBERT Academic Publishing: Saarbrücken, Germany, 2011. | spa |
dcterms.references | Dousson, C.; Le Maigat, P. Chronicle Recognition Improvement Using Temporal Focusing and Hierarchization. In Proceedings of the 20th International Joint Conference on Artifical Intelligence (IJCAI), Hyderabad, India, 6–12 January 2007; Volume 7, pp. 324–329. | spa |
dcterms.references | Vizcarrondo, J.; Aguilar, J.; Exposito, E.; Subias, A. Building Distributed Chronicles for Fault Diagnostic in Distributed Systems using Continuous Query Language (CQL). Int. J. Eng. Dev. Res. 2015, 3, 131–144. | spa |
dcterms.references | Puerto, E.; Aguilar, J.; Chávez, D. A Recursive Patterns Matching Model for the Dynamic Pattern Recognition Problem. Appl. Artif. Intell. 2018, 32, 419–432. | spa |
dcterms.references | Puerto Cuadros, E.G.; Aguilar Castro, J.L. Learning Algorithm for the Recursive Pattern Recognition Model. Appl. Artif. Intell. 2016, 30, 662–678. | spa |
dcterms.references | Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. | spa |
dcterms.references | Camargo, E.; Aguilar, J. Hybrid intelligent supervision model of oil wells. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, China, 6–11 July 2014; pp. 934–939. | spa |
dcterms.references | Huang, C.-L.; Fallah, Y.P.; Sengupta, R.; Krishnan, H. Adaptive intervehicle communication control for cooperative safety systems. IEEE Netw. 2010, 24, 6–13.c | spa |
dcterms.references | DATA.GOV.UK Road Safety Data. Available online: https://data.gov.uk/dataset/road-accidents-safety-data (accessed on 10 July 2017). | spa |
dcterms.references | Datos Aemet. Available online: http://datosclima.es/Aemethistorico/Descargahistorico.html (accessed on 12 July 2017). | spa |
dcterms.references | INEC Anuario de Transportes. Available online: http://www.ecuadorencifras.gob.ec/transporte/ (accessed on 10 September 2018). | spa |
dcterms.references | OBD2 On Board Diagnostic. Available online: http://www.teseomotor.com/obd2/ (accessed on 10 July 2017). | spa |
dcterms.references | Shoemaker, A.L. What’s Normal?—Temperature, Gender, and Heart Rate. J. Stat. Educ. 1996, 4. | spa |
dcterms.references | Aguilar, J.; Aguilar, K.; Gutiérrez, J. An Approach for the Structural Learning of Chronicles. Contemp. Eng. Sci. 2018, 11, 793–806. | spa |
dcterms.references | Weber, R.H.; Weber, R. Internet of Things: Legal Perspectives; CRC Press: Boca Raton, FL, USA, 2010; Volume 49. | spa |
dcterms.references | Han, W.; Wang, W.; Li, X.; Xi, J. Statistical-based approach for driving style recognition using Bayesian probability with kernel density estimation. IET Intell. Transp. Syst. 2018, 13, 22–30. | spa |
dcterms.references | Yang, L.; Ma, R.; Zhang, H.M.; Guan, W.; Jiang, S. Driving behavior recognition using EEG data from a simulated car-following experiment. Accid. Anal. Prev. 2018, 116, 30–40. | spa |
dcterms.references | Wang, W.; Xi, J.; Chong, A.; Li, L. Driving style classification using a semisupervised support vector machine. IEEE Trans. Hum. Mach. Syst. 2017, 47, 650–660. | spa |
dc.identifier.doi | https://doi.org/10.3390/s20092597 | |
dc.publisher.place | Suiza | spa |
dc.relation.citationedition | Vol.20 No.9.(2020) | spa |
dc.relation.citationendpage | 28 | spa |
dc.relation.citationissue | 9(2020) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 20 | spa |
dc.relation.cites | Cordero, J., Aguilar, J., Aguilar, K., Chávez, D., & Puerto, E. (2020). Recognition of the driving style in vehicle drivers. Sensors, 20(9), 2597. | |
dc.relation.ispartofjournal | Sensors | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | pattern recognition | eng |
dc.subject.proposal | driving style | eng |
dc.subject.proposal | intelligent techniques | eng |
dc.subject.proposal | advanced driver-assistance systems | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |