Mostrar el registro sencillo del ítem

dc.contributor.authorGil, Angel
dc.contributor.authorPuerto Cuadros, Eduard Gilberto
dc.contributor.authorAguilar, Jose
dc.contributor.authorDapena, Eladio
dc.date.accessioned2021-11-30T14:47:19Z
dc.date.available2021-11-30T14:47:19Z
dc.date.issued2021-01-12
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1562
dc.description.abstractIn this paper, we propose an emotional model for robots in a multi-robot system, in order to allow emerging behaviors. The emotional model uses four universal emotions: anger, disgust, sadness, and joy, assigned to each robot based on the level of satisfaction of its basic needs. These four universal emotions lie on a spectrum where depending where the emotion of the robot lies, can affect its behavior and of its neighboring robots. The more negative the emotion is, the more individualistic it becomes in its decisions (anger, sadness or disgust). The more positive the robot is in its emotion, the more it will consider the group and global goals (joy). Each robot is able to recognize another robot′s emotion in the system based on their current state, using the AR2P (AR2P for its acronym in Spanish: Algoritmo Recursivo de Reconocimiento de Patrones) recognition algorithm. In this way, it can use this information of the emotions to decide with whom collaborate. Specifically, the paper addresses emotions’ influence on the behavior of the system, at the individual and collective levels, and the emotions’ effects on the emergent behaviors of the multi-robot system. The paper explores the emerging behavior in two multi-robot scenarios; nectar harvesting and object transportation. The results show that the emotions are important to the emergent behavior in a multi-robot system.eng
dc.format.extent29 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCybernetics and Systemsspa
dc.relation.ispartofCybernetics and Systems
dc.rightsCopyright © 2021 Informa UK Limitedeng
dc.sourcehttps://www.tandfonline.com/doi/full/10.1080/01969722.2020.1854420spa
dc.titleAnalysis of the emotions in a multi-robot system in emergent contextseng
dc.typeArtículo de revistaspa
dcterms.referencesAguilar, J. 1998. Definition of an energy function for the random neural to solve optimization problems. Neural Networks 11:731–7.spa
dcterms.referencesAguilar, J. 2001. A fuzzy cognitive map based on the random neural model. Vol. 2072: Lecture notes in artificial intelligence, 333–8. Berlin: Springer-Verlag.spa
dcterms.referencesAguilar, J. 2013. Different dynamic causal relationship approaches for cognitive maps. Applied Soft Computing 13 (1):271–82. doi:10.1016/j.asoc.2012.08.037.spa
dcterms.referencesAguilar, J. 2014. Introducción a los Sistemas Emergentes. Mérida, Venezuela: Talleres Gráficos, Universidad de Los Andes.spa
dcterms.referencesAlexander, J., and S. Smales. 1997. Intelligence, learning and long-term memory. Personality and Individual Differences 23 (5):815–25. doi:10.1016/S0191-8869(97)00054-8.spa
dcterms.referencesBanik, S. C., K. Watanabe, M. K. Habib, and K. Izumi. 2008. An emotion-based task sharing approach for a cooperative multiagent robotic system. In Proceedings of the IEEE International Conference on Mechatronics Automation, 77–82. Takamatsu, Japan: IEEE.spa
dcterms.referencesBanik, S. C., K. Watanabe, and K. Izumi. 2008. Improvement of group performance of job distributed mobile robots by an emotionally biased control system. Artificial Life and Robotics (12):245–49.spa
dcterms.referencesBanik, S. C., K. Watanabe, and K. Izumi. 2007. Task allocation with a cooperative plan for an emotionally intelligent system of multi-robots. In Proceedings of the 46th Annual Conference of the Society of Instrument and Control Engineers of Japan, 1004–10. Takamatsu, Japan: IEEE.spa
dcterms.referencesBotzheim, J., and N. Kubota. 2014. Spiking neural network based emotional model for robot partner. In IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS), 1–6. Orlando, FL: IEEE.spa
dcterms.referencesCao, Y., A. Fukunaga, and F. Meng. 1995. Cooperative mobile robotics: antecedents and directions. In Proceedings of the Intelligent Robots and Systems, vol. 1, 226–34. Pittsburgh, PA: IEEE.spa
dcterms.referencesContreras, J., and J. Aguilar. 2010. The FCM designer tool. In Fuzzy cognitive maps: Advances in theory, methodologies, tools and application, ed. M. Glykas, 71–88. New York: Springer.spa
dcterms.referencesDe la Rosa, F., and M. E. Jiménez. 2009. Simulation of multi-robot architectures in mobile robotics. In IEEE Electronics, Robotics and Automotive Mechanics Conference, 199–203. Cuernavaca, Mexico: IEEE.spa
dcterms.referencesFang, B., L. Chen, H. Wang, S. Dai, and Q. Zhong. 2014. Research on Multirobot pursuit task allocation algorithm based on emotional cooperation factor. The Scientific World Journal 2014:1–6. doi:10.1155/2014/864180.spa
dcterms.referencesFernández, N., J. Aguilar, C. Piña-García, and C. Gershenson. 2017. Complexity of lakes in a latitudinal gradient. Ecological Complexity 31:1–20. doi:10.1016/j.ecocom.2017.02.002.spa
dcterms.referencesGautam, A., and S. Mohan. 2012. A review of research in multi-robot systems. In IEEE 7th International Conference on Industrial and Information Systems (ICIIS), 1–5. Chennai, India: IEEE.spa
dcterms.referencesGil, A., J. Aguilar, E. Dapena, and R. Rivas. 2020. Emotional model for a multi-robot system with emergent behavior. International Journal of Robotics and Automation 9 (3):220–32.spa
dcterms.referencesGil, A., J. Aguilar, R. Rivas, and E. Dapena. 2016. Módulo conductual inmerso en una arquitectura de control para sistemas multi-robots. Revista Ingeniería al Día 2 (1):40–57.spa
dcterms.referencesGil, A., J. Aguilar, R. Rivas, and E. Dapena. 2019. A Control Architecture for Robot Swarms (AMEB). Cybernetics and Systems 50 (3):300–22. doi:10.1080/01969722.2018.1552843.spa
dcterms.referencesGil, A., J. Aguilar, R. Rivas, E. Dapena, and K. Hernández. 2015. Architecture for multi-robot systems with emergent behavior. In Proceedings of the International Conference on Artificial Intelligence, 41–7.spa
dcterms.referencesGil, A., E. Puerto, J. Aguilar, and E. Dapena. 2018. Emergence analysis in a multi-robot system. In Proceedings of XLIV Conferencia Latinoamericana en Informática (CLEI 2018). São Paulo, Brazil: IEEE.spa
dcterms.referencesHernández, K., A. Gil, J. Aguilar, R. Rivas, and E. Dapena. 2016. Diseño de una plataforma multi-robot de propósito general. In Simulación y Aplicaciones Recientes Para Ciencia y Tecnología CIMENICS, 785–96. Caracas, Venezuela: Sociedad Venezolana de Métodos Númericos en Ingeniería.spa
dcterms.referencesHsu, C. M., T. Chen, and J. S. Heh. 2014. Emotional and conditional model for pet robot based on neural network. In 7th International Conference on Ubi-Media Computing and Workshops, Ulaanbaatar, 305–8.spa
dcterms.referencesKefi, S., I. Kallel, and A. M. Alimi. 2014. Hybrid planning approaches for multirobot systems: A review and a proposal of a MultiAgent subsumption simulation. In Proceedings of the 14th International Conference on Hybrid Intelligent Systems, 285–90. Kuwait, Kuwait: IEEE.spa
dcterms.referencesKehoe, B., S. Patil, P. Abbeel, and K. Goldberg. 2015. A survey of research on cloud robotics and automation. IEEE Transactions on Automation Science and Engineering 12 (2):398–409. doi:10.1109/TASE.2014.2376492.spa
dcterms.referencesKumar, D., and K. Mishra. 2017. Artificial bee colony as a frontier in evolutionary optimization: A survey. In Advances in computer and computational sciences, eds. S. Bhatia, K. Mishra, S. Tiwari, and V. Singh, 541–8. Singapore: Springer.spa
dcterms.referencesKurzweil, R. 2012. How to create a mind: The secret of human thought revealed. New York: Penguin.spa
dcterms.referencesLee, J., C. Wook Ahn, and J. An. 2012. A honey bee swarm-inspired cooperation algorithm for foraging swarm robots: An empirical analysis. In Proceedings of the International Conference on Advance Intelligent Mechatronics, 489–93. Wollongong, Australia: IEEE.spa
dcterms.referencesMa, C. 2001. The construction of an emotion model of agent based on the OCC model. In Proceedings of the International Conference on Computational and Information Sciences, 940–3. Chengdu, China: IEEE.spa
dcterms.referencesMaghsoud, P., C. W. De Silva, and M. T. Khan. 2014. Autonomous and cooperative multirobot system for multi-object transportation. In Proceedings of the 9th International Conference on Computer Science Education, 211–7. Vancouver, Canada: IEEE.spa
dcterms.referencesMasuyama, N., and C. K. Loo. 2015. Robotic emotional model with personality factors based on Pleasant-Arousal scaling model. In 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 19–24. Kobe, Japan: IEEE.cspa
dcterms.referencesNighot, M., H. Patil, and G. Mani. 2012. Multi-robot hunting based on swarm intelligence. In Proceedings of the 12th International Conference on Hybrid Intelligent Systems, 203–6. IEEE.spa
dcterms.referencesOrtony, A., G. L. Clore, and A. Collins. 1998. The cognitive structure of emotions. New York: Cambridge University Press.spa
dcterms.referencesPerozo, N., J. Aguilar, and O. Terán. 2008. Proposal for a Multiagent Architecture for Self-Organizing Systems (MASOES). Lecture Notes in Computer Science 5075:434–9.spa
dcterms.referencesPerozo, N., J. Aguilar, O. Terán, and H. Molina. 2012. Un modelo afectivo para la arquitectura multiagente para sistemas emergentes y auto-organizados (MASOES). Revista Técnica Ingeniería Universidad Del Zulia 35 (1):80–90.spa
dcterms.referencesPerozo, N., J. Aguilar, O. Terán, and H. Molina. 2013. A verification method for MASOES. IEEE Transactions on Cybernetics 43 (1):64–76. doi:10.1109/TSMCB.2012.2199106.spa
dcterms.referencesPuerto, E., and J. Aguilar. 2016. Learning algorithm for the recursive pattern recognition model. Applied Artificial Intelligence, Taylor and Francis 30 (7):662–78.spa
dcterms.referencesPuerto, E., and J. Aguilar. 2017. Un Algoritmo Recursivo de Reconocimiento de Patrones. Revista Técnica de Ingeniería de la Universidad Del Zulia 40 (2):95–104.spa
dcterms.referencesPuerto, E., J. Aguilar, and D. Chávez. 2018. A recursive patterns matching model for the dynamic pattern recognition problem. Applied Artificial Intelligence 32 (4):419–32. doi:10.1080/08839514.2018.1481593.spa
dcterms.referencesPuerto, E., J. Aguilar, C. López, and D. Chávez. 2019. Using multilayer fuzzy cognitive maps to diagnose autism spectrum disorder. Applied Soft Computing 75:58–71. doi:10.1016/j.asoc.2018.10.034.spa
dcterms.referencesRen, X., T. Wang, M. Altmeyer, and K. Schweizer. 2014. A learning-based account of fluid intelligence from the perspective of the position effect. Learning and Individual Differences 31:30–5. doi:10.1016/j.lindif.2014.01.002.spa
dcterms.referencesRiahi, K., M. Jangjou, N. Khaefinejad, and T. Laleh. 2012. Adventurous robots equipped with basic emotions. In Proceedings of the International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support, 117–20. New Orleans, LA: IEEE.spa
dcterms.referencesRogla, P. N., and E. C. Mateu. 2006. La arquitectura Acromovi: una arquitectura para tareas cooperativas de robots móviles. In Campus Multidisciplinar en Percepción e Inteligencia Conference, 365–76. Albacete, España: CMPI.spa
dcterms.referencesRussell, J. 1980. A circumplex model of affect. Journal of Personality and Social Psychology 39 (6):1161–78. doi:10.1037/h0077714.spa
dcterms.referencesSahin, E., T. H. Labella, V. Trianni, J. L. Deneubourg, P. Rasse, D. Floreano, L. Gambardella; F. Mondada; S. Nolfi, and M. Dorigo. 2002. SWARM-BOT: Pattern formation in a swarm of self-assembling mobile robots. In 2002 IEEE International Conference on Systems, Man and Cybernetics. Tunisia, Tunisia: IEEE.spa
dcterms.referencesSang-Wook, S., Y. Hyun-Chang, and S. Kwee-Bo. 2009. Behavior learning and evolution of swarm robot system for cooperative behavior. In IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 673–8. Singapore, Singapore: IEEE.spa
dcterms.referencesStunebrink, B., M. Dastani, and J. Meyer. 2009. The OCC model revisited. In 4th Workshop on Emotion and Computing. Programming Multi-Agent Systems.spa
dcterms.referencesWan, Y. 2007. On the cognitive processes of human perception with emotions, motivations, and attitudes. Journal of Cognitive Informatics and Natural Intelligence 1 (4):1–13.spa
dcterms.referencesZhang, X., S. Alves, G. Nejat, and B. Benhabib. 2017. A robot emotion model with history. In IEEE International Symposium on Robotics and Intelligent Sensors, 230–5. Ottawa, Canada: IEEE.spa
dcterms.referencesZia, K., A. Din, K. Shahzad, and A. Ferscha. 2017. A cognitive agent-based model for multi-robot coverage at a city scale. Complex Adaptive Systems Modeling 5 (1):12772–97. doi:10.1186/s40294-016-0040-9.spa
dc.identifier.doihttps://doi.org/10.1080/01969722.2020.1854420
dc.publisher.placeReino Unidospa
dc.relation.citationeditionVol.52 No.4.(2021)spa
dc.relation.citationendpage273spa
dc.relation.citationissue4(2021)spa
dc.relation.citationstartpage245spa
dc.relation.citationvolume52spa
dc.relation.citesGil, A., Puerto, E., Aguilar, J., & Dapena, E. (2020). Analysis of the Emotions in a Multi-Robot System in Emergent Contexts. Cybernetics and Systems, 52(4), 245-273.
dc.relation.ispartofjournalCybernetics and Systemsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalEmergent systemseng
dc.subject.proposalemotioneng
dc.subject.proposalmulti-robot systemseng
dc.subject.proposalpattern recognitioneng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem