Mostrar el registro sencillo del ítem

dc.contributor.authorBecerra Moreno, Dorance
dc.contributor.authorBarrientos, Ingrid
dc.contributor.authorRodriguez, Ana
dc.contributor.authorMachuca-Martinez, Fiderman
dc.contributor.authorRamírez, Luisa
dc.date.accessioned2021-11-27T23:20:32Z
dc.date.available2021-11-27T23:20:32Z
dc.date.issued2020-05-29
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1507
dc.description.abstractTreatment of wastewater with Chlorpyrifos content using heterogeneous photocatalysis was evaluated, for which a compound parabolic collector (CPC) was used, under diferent combinations of pH and TiO2 concentration designed using the response surface methodology (RSM), and an anaerobic biological process based on the specifc methanogenic activity test (SMA), using a focculent sludge and an initial concentration of 2.0 g VSS/L. Initially, water resulting from the triple washing of equipment for manual application of Chlorpyrifos from the El Zulia Irrigation District and the municipality of Bucarasica were characterized. In the biological process, COD and TOC removals of 46.4% and 86.6% were obtained; while by applying preliminary photocatalytic processes, under optimal conditions of TiO2 (100 mg/L), pH (3 units) and retention time (3 h), better biodegradability efciencies (72.2% and 53.0%) were achieved. The results revealed that the combined use of advanced oxidation processes with biological treatment technologies is technically viable, as it increases the efciency of removing contaminants from agricultural efuents with Chlorpyrifos.eng
dc.format.extent11 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherTopics in Catalysisspa
dc.relation.ispartofTopics in Catalysis ISSN: 1572-9028, 2020 vol:63 fasc: N/A págs: 1 - 11, DOI:10.1007/s11244-020-01281-4
dc.rightsSpringer Science+Business Media, LLC, part of Springer Nature 2020eng
dc.sourcehttps://link.springer.com/article/10.1007%2Fs11244-020-01281-4#additional-informationspa
dc.titleTreatment of Agricultural Wastewater with Chlorpyrifos by Coupling of Heterogeneous Photocatalysis and Anaerobic Biological Processeng
dc.typeArtículo de revistaspa
dcterms.referencesFood and Agriculture Organization of the United Nations (FAO) (2002) World Agriculture: towards the years 2015/2030—Summary Report. Rome, Italy. ISBN: 92-5-304761-5spa
dcterms.referencesCorporación Autónoma Regional de la Frontera Nororiental— CORPONOR (2014) Sectional committee of pesticides developed the articulation of the action plan for Norte of Santander, Cúcuta, Colombia. http://www.corponor.gov.co/es/index.php/es/comun icaciones/historico-de-noticias/1835-comite-seccional-de-plagu icidas-desarrollo-la-articulacion-del-plan-de-accion-para-norte -de-santander. Accessed March 2018spa
dcterms.referencesBarba-Ho L, Becerra D, Angulo V, Salazar L (2011) Transformation of agroindustry efuents with pesticides content by heterogeneous catalysis. Nat Resour Environ Eng 10:127–136spa
dcterms.referencesGarcía L (2013) Study of the behavior of anaerobic sludge treatment before pH modifcations. Polytechnic University of Valencia, Higher Technical School of Design Engineering, Spain. https://riunet.upv.es/handle/10251/50162spa
dcterms.referencesBecerra D (2013) Coupling of photocatalytic and biological processes for the treatment of wastewater with pesticide residues. J Chem Inf Model 53:1689–1699spa
dcterms.referencesBarba L, Becerra D, Gutiérrez H (2009) Biological treatment alternatives for pesticides used in sugarcane for coupling with photocatalytic systems. Nat Resour Environ Eng 8:4–12spa
dcterms.referencesAmerican Public Health Association—APHA, American Water Works Association—AWWA, Water Environment Federation— WEF (1999) Standard methods for the examination of water and wastewater 20th edition. Washington, United Statesspa
dcterms.referencesTorres P, Pérez A (2010) Specific methanogenic activity: a control and optimization tool for anaerobic wastewater treatment systems. Nat Resour Environ Eng 9:5–14spa
dcterms.referencesTorres P, Victoria J, Cajigas A, Pérez A (2002) Methanogenic activity as a tool for the optimization of the anaerobic process in the treatment of easily acidifiable wastewater. In: XXVIII Congreso Interamericano de Ingeniería Sanitaria y Ambiental. AIDIS. Cancún, Méxicospa
dcterms.referencesAquino S, Chernicharo C, Foresti E, Florêncio dos M, Monteggia L (2007) Methodologies for determining specific methanogenic activity (SMA) in anaerobic sludge. Sanitary and Environmental Engineering. https://doi.org/10.1590/S1413-41522007000200010spa
dcterms.referencesCastro L, Quintero A (2001) Study of the anaerobic biodegradability of the Carbofuran pesticide. Universidad del Valle, Santiago de Calispa
dcterms.referencesFernández M, Abalos A, Crombet S, Caballero H (2010) Anaerobic biodegradability tests of wastewater generated in a soybean oil refining plant. Interciencia 35:600–604spa
dcterms.referencesMoreira N, Narciso-da-Rocha C, Polo M, Pastrana L, Faria J, Manaia C, Fernández P, Nunes O, Silva A (2018) Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators antibiotic resistant bacteria related genes in urban wastewater. Water Res 135:195–206. https://doi.org/10.1016/j.watres.2018.01.064spa
dcterms.referencesPrieto-Rodriguez L, Miralles L, Oller S, Agüera I, Li Puma A, Malato G (2012) Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. J Hazard Mater 211–212:131–137. https://doi.org/10.1016/j.jhazmat.2011.09.008spa
dcterms.referencesLópez A (2006) Photocatalytic oxidation of 2,4-D herbicide. Universidad del Valle, Santiago de Calispa
dcterms.referencesLópez B, Torres R, Peñuela G (2011) Solar photocatalitycal treatment of Carbofurán at lab and pilot scale: effect of classical parameters, evaluation of the toxicity and analysis of organic by-products. J Hazard Mater 191:196–203spa
dcterms.referencesGarcía J (2014) Treatment of water contaminated with pesticides used in sugarcane cultivation in Colombia. Universitat Politècnica de València, Valenciaspa
dcterms.referencesJiménez M, Santos J (2008) Chlorpyrifos pesticide mobility and environmental impact study, on CORPOICA soils located in Villavicencio from a simulated spill. Universidad de la Salle, Bogotá D.C. https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/597/spa
dcterms.referencesBaquero A, Lara-Borrero J, Torres A (2014) Study of treatability of wastewater in Bogotá with activated sludge: Continuous monitoring aspects, specific characterization and simulation of the process. Pontificia Universidad Javeriana, Bogotá. https://doi.org/10.13140/rg.2.1.1054.0962spa
dcterms.referencesJiménez E, Mojica M (2005) Study of feasibility of an anaerobic reactor of flow to piston to scale of laboratory, in the treatment of the residual maidservants’ waters of the municipality of Tunja to a temperature average of 14 oC. Tecnogestión 2:13–18. https://revistas.udistrital.edu.co/index.php/tecges/article/view/4320spa
dcterms.referencesDíaz-Báez M, Espitia S, Molina F (2002) Chapter Five: Characterization of anaerobic sludge and wastewater. Anaerobic digestion: an approach to technology. Universidad Nacional de Colombia. http://www.bdigital.unal.edu.co/43178/11/Digestion%20anaerobia_Parte%202.pdfspa
dcterms.referencesMosquera J, Martínez B (2012) Evaluation of anaerobic digestion as an alternative for stabilization of biosolids produced in the wastewater treatment plant of the Technological University of Pereira. Universidad Tecnológica de Pereira, Pereiraspa
dcterms.referencesSivagami K, Vikraman B, Krishna R, Swaminathan T (2016) Chlorpyrifos and Endosulfan degradation studies in an annular slurry photo reactor. Ecotoxicol Environ Saf 134:327–331. https://doi.org/10.1016/j.ecoenv.2015.08.015 (ISSN 0147–6513)spa
dcterms.referencesGar Alalm M, Tawfik A, Ookawara S (2015) Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: operational conditions, kinetics, and costs. J Water Process Eng 8:55–63. https://doi.org/10.1016/j.jwpe.2015.09.007spa
dcterms.referencesAmalraj A, Pius A (2015) Photocatalytic degradation of monocrotophos and chlorpyrifos in aqueous solution using TiO2 under UV radiation. J Water Process Eng 7:94–101spa
dcterms.referencesGonzález M, Saldarriaga J (2008) Biological removal of organic matter, nitrogen and phosphorus in an anaerobic-anoxic-aerobic type system. Mag EIA 5:45–53spa
dcterms.referencesValery K (2010) Treatment of water contained in oil pits using native mixed cultivation. Universidad del Zulia, Maracaibospa
dc.identifier.doi10.1007/s11244-020-01281-4
dc.publisher.placeLuxemburgospa
dc.relation.citationeditionVol. 63 (2020)spa
dc.relation.citationendpage1271spa
dc.relation.citationstartpage1261spa
dc.relation.citationvolume63spa
dc.relation.citesBecerra, D., Barrientos, I., Rodriguez, A. et al. Treatment of Agricultural Wastewater with Chlorpyrifos by Coupling of Heterogeneous Photocatalysis and Anaerobic Biological Process. Top Catal 63, 1261–1271 (2020). https://doi.org/10.1007/s11244-020-01281-4
dc.relation.ispartofjournalTopics in Catalysisspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalPesticideseng
dc.subject.proposalCompound parabolic collectoreng
dc.subject.proposalTiO2eng
dc.subject.proposalResponse surface methodologyeng
dc.subject.proposalSpecifc methanogenic activityeng
dc.subject.proposalReal wastewatereng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem