Mostrar el registro sencillo del ítem
Simulating hydrodynamics in a Rushton turbine at different stirring velocities applied to non-Newtonian fluids
dc.contributor.author | Gelves, German | |
dc.date.accessioned | 2021-11-27T23:00:57Z | |
dc.date.available | 2021-11-27T23:00:57Z | |
dc.date.issued | 2020-08-05 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1506 | |
dc.description.abstract | In this work, gas-liquid hydrodynamics of a Rushton turbine was studied using Computational Fluid Dynamics. Different stirring conditions commonly used in fungal culture applications are simulated. Several scenarios are predicted related to gas-liquid mass transfer limitation. The above, reflected by low air dispersion reached and bubble size determinations caused by the non-Newtonian rheology, leading the process to obtain k!a values only in the order of 30 h-1 at high, stirring speeds. However, the high-power consumption in fungal culture in agitated tank bioreactors can be disadvantages in large-scale prototypes applied in nonNewtonian fluids. These Findings shown in this research should be considered as a primary criterion for optimizing mass transfer problems in large scale fungal culture applications. | eng |
dc.format.extent | 8 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Journal of Physics: Conference Series | spa |
dc.relation.ispartof | Journal of Physics: Conference Series ISSN: 1742-6596, 2020 vol:1587 fasc: 2020 págs: 1 - 7, DOI:10.1088/1742-6596/1587/1/012012 | |
dc.rights | Content from this work may be used under the terms of theCreative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd | eng |
dc.source | https://iopscience.iop.org/article/10.1088/1742-6596/1587/1/012012 | spa |
dc.title | Simulating hydrodynamics in a Rushton turbine at different stirring velocities applied to non-Newtonian fluids | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Niño L, Gelves R, Ali H, Solsvik J, Jakobsen H 2019 Chemical Engineering Science 211 1 | spa |
dcterms.references | Gelves R, Benavides A, Quintero J 2013 Ingeniare Revista Chilena de Ingeniería 21 347 | spa |
dcterms.references | Jenne M, Reuss M 1999 Chemical Engineering Science 54(17) 3921 | spa |
dcterms.references | Luo J, Issaand R, Gosman A 1994 Chemical Engineering Symposium Series. Institution of Chemical Engineers 136 549 | spa |
dcterms.references | Micale G, Brucato, A Grisafi F 1999 American Institute of Chemical Engineering 45(3) 445 | spa |
dcterms.references | Rutherford K, Lee, Mahmoudi K, Yianneskis M 1996 American Institute of Chemical Engineering 42 332 | spa |
dcterms.references | Tabor A, Gosman G, Issa R 1996 American Institute of Chemical Engineering Symposium Series 140 25 | spa |
dcterms.references | Solsvik J, Jakobsen H 2016 American Institute of Chemical Engineering 62(5) 1795 | spa |
dcterms.references | Kerdouss F, Bannari A, Proulx P, Bannari R, Skrga M, Labrecque Y 2012 Computers and Chemical Engineering 32 1943 | spa |
dcterms.references | Kerdouss F, Kiss L, Proulx P, Bilodeauand, Dupuis C 2005 International Journal of Chemical Reactor Engineering 3 35 | spa |
dcterms.references | Kerdouss F, Bannari A, Proulx P, Bannari R, Skrgaand M, Labrecque Y 2007 Computers and Chemical Engineering 3 1 | spa |
dcterms.references | Lane L, Schwarz M, Evans M 2005 Chemical Engineering Science 60 2203 | spa |
dcterms.references | Venneker C, Derksen H 2002 American Institute of Chemical Engineering 48(4) 673 | spa |
dcterms.references | Scargiali F, D’Orazio A, Grisafi F, Brucato 2007 Chemical Engineering Research and Design 85(5) 637 | spa |
dcterms.references | Kasat G, Pandit A B, Ranade V V 2008 International Journal of Chemical Reactor Engineering 6 1 | spa |
dcterms.references | Nino L, Peñuela M, Gelves G 2018 International Journal of Applied Engineering Research 13(11) 9353 | spa |
dcterms.references | Ranade V V, Dommeti J B 1990 Chemical Engineering Communications 74(4) 476 | spa |
dcterms.references | Jakobsen H, Lindborg H, Dorao C 2005 Industrial Engineering of Chemical Research 44(14) 5107 | spa |
dcterms.references | Jahoda M, Tomášková L, Moštěk M 2009 Chemical Engineering Research and Design 87(4) 460 | spa |
dcterms.references | Luo H, Svendsen H 1996 American Institute of Chemical Engineering 42(5) 1225 | spa |
dcterms.references | Laakkonen M, Moilanen P, Alopaeus A, Aittamaa J 2007 Chemical Engineering Research and Design 85(5) 665 | spa |
dcterms.references | Panneerselvam R, Savithri S 2011 Chemical Engineering Science 66(14) 14 | spa |
dcterms.references | Martinov M, Vlaev S 2002 Chemical and Biochemical Engineering 16(1) 1 | spa |
dcterms.references | Tiefeng W, Jinfu W 2007 Chemical Engineering Science 62(24) 7107 | spa |
dcterms.references | Chen P, Sanyal J, Dudukovic M P 2005 Chemical Engineering Science 60(4) 1085 | spa |
dcterms.references | Gelves R, Dietrich A, Takors R 2014 Bioprocess and Biosystems Engineering 37 365 | spa |
dcterms.references | Niño L, Peñuela M, Gelves G 2016 International Journal of Applied Engineering Research 11(9) 6097 | spa |
dcterms.references | Raikar B, Bhatia R, Malone F, Henson A 2009 Chemical Engineering Science 64 2433 | spa |
dcterms.references | Niño L, Gelves G 2015 Revista Facultad de Ingeniería Universidad de Antioquia 75 163 | spa |
dcterms.references | Junker A 2004 Journal of Bioscience and Bioengineering 97(6) 347 | spa |
dcterms.references | Alopaeus V, Koskinen K 1999 Chemical Engineering Science 54(24) 5887 | spa |
dcterms.references | Ishii M, Zuber N 1979 American Institute of Chemical Engineering 25(5) 843 | spa |
dcterms.references | Elgobashiand S E, Rizk M A 1989 International Journal of Multiphase Flow 15(1) 119 | spa |
dcterms.references | Chavez-Parga M, Gonzalez-Ortega O, Negrete-Rodriguez M, Medina-Torres L, Silva E 2007 World Journal of Microbiology and Biotechnology 23(5) 615 | spa |
dcterms.references | Hounslow M, Ryall R, Marschall V 1988 American Institute of Chemical Engineering 34(11) 1821 | spa |
dcterms.references | Litster D, Smit D, Hounslow M 1995 American Institute of Chemical Engineering 41(3) 591 | spa |
dcterms.references | Niño L, Peñuela M, Gelves G 2018 Indian Journal of Science and Technology 11 1 | spa |
dcterms.references | Hagesaether L, Jakobsen H A, Hjarbo K, Svendsen H F 2000 A coalescence and breakup module for implementation in CFD codes European Symposium on Computer-Aided Process Engineering ed Pierucci S (Netherlands: Elsevier Science) p 367 | spa |
dcterms.references | Sanyal J, Marchisio D L, Fox R O, Dhanasekharan K 2005 Industrial Engineering and Chemical Research 44(14) 5063 | spa |
dcterms.references | Coulaloglou C, Tavlarides L 1977 Chemical Engineering Science 32 1289 | spa |
dcterms.references | Gil N, Appleton M, Baganz F, Lye G 2008 Biotechnology and Bioengineering 100(6) 1144 | spa |
dcterms.references | Luong H T, Volesky B 1979 American Institute of Chemical Engineering 25(5) 893 | spa |
dcterms.references | Xie M 2014 Chemical Engineering Science 106 144 | spa |
dcterms.references | Valverde M R, Bettega B, Badino A C 2016 Theoretical Foundations in Chemical Engineering 50(6) 945 | spa |
dcterms.references | Ochoa F, Gomez E 2009 Biotechnology Advances 27 153 | spa |
dcterms.references | Dhanasekharan K, Sanyal J, Jain J, Haidari A 2005 Chemical Engineering Science 60 213 | spa |
dcterms.references | Flórez F, Torre M 1997 Journal of Fermentation and Bioengineering 6 561 | spa |
dcterms.references | Arjunwadkar S J, Sarvanan K, Kulkarni P, Pandit A B 1998 Biochemical Engineering Journal 2 99 | spa |
dcterms.references | Shukla V K, Parasu U, Kulkarni P R, Pandit A B 2001 Biochemical Engineering Journal 8 19 | spa |
dc.identifier.doi | 10.1088/1742-6596/1587/1/012012 | |
dc.publisher.place | Reino Unido | spa |
dc.relation.citationedition | Vol. 1587 , 012012 (2020) | spa |
dc.relation.citationendpage | 7 | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 1587 | spa |
dc.relation.cites | Gelves, G. (2020). Simulating hydrodynamics in a Rushton turbine at different stirring velocities applied to non-Newtonian fluids. Journal of Physics: Conference Series, 1587, Artículo 012012. https://doi.org/10.1088/1742-6596/1587/1/012012 | |
dc.relation.ispartofjournal | Journal of Physics: Conference Series | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Ambiente y Vida - GIAV [124]