Mostrar el registro sencillo del ítem
Industrial Scale Bioprocess Simulation for Ganoderma Lucidum Production using Superpro Designer
dc.contributor.author | Gelves, German | |
dc.contributor.author | Niño, Lilibeth | |
dc.contributor.author | Araque, J | |
dc.date.accessioned | 2021-11-27T17:00:14Z | |
dc.date.available | 2021-11-27T17:00:14Z | |
dc.date.issued | 2020-11-04 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1499 | |
dc.description.abstract | The medicinal mushroom Ganoderma lucidum is used by traditional medicine for human infection treatments such as gastric cancer, hypertension, hepatitis, chronic bronchitis and hypocholesterolemia. However, the conventional production of Ganoderma in a solid phase on a large scale is costly and requires excessive processing times, which hinders its technical-economic viability. Based on the preceding, engineering studies are needed to predict their large-scale production, to identify the necessary industrial equipment and costs to propose strategies that reduce operating costs. The SuperPro Designer computational tool is a very versatile simulator used in a wide variety of industrial applications. That is why the purpose of this research is to evaluate the production of the Ganoderma lucidum fungus in large-scale growth culture from a computational approach. The latter, by performing simulations using SuperPro Designer software to identify process yields and propose improvements aimed at increasing productivity. The software was calibrated with experimental data reported from literature and different strategies were intended to determine the economic viability. It was found that the volume of the bioreactor significantly affects production costs compared to exopolysaccharides yields, obtaining values of 6.82 USD/g in a 2 m3 bioreactor while in a production volume of 20 m3 the costs are significantly reduced to 0.8 USD/g. The findings found here demonstrate the importance of predicting a large-scale bioprocess to improve the overall productivity of a biotechnological product. | eng |
dc.format.extent | 10 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Journal of Physics: Conference Series | spa |
dc.relation.ispartof | Journal of Physics: Conference Series ISSN: 1742-6596, 2020 vol:1655 fasc: N/A págs: 1 - 9, DOI:10.1088/1742-6596/1655/1/012077 | |
dc.rights | Content from this work may be used under the terms of theCreative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd | eng |
dc.source | https://iopscience.iop.org/article/10.1088/1742-6596/1655/1/012077 | spa |
dc.title | Industrial Scale Bioprocess Simulation for Ganoderma Lucidum Production using Superpro Designer | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Wan A, Mohtar Q, Latif N, Harvey M and McNeil B 2016 Production of exopolysaccharide by Ganoderma lucidum in a repeated-batch fermentation Biocatalysis and Agricultural Biotechnology 6 91 | spa |
dcterms.references | Torres M, Quintero C and Atehortua L 2011 Effect of nutrients in the biomass production of the medicinal mushroom Ganoderma lucidum Revista Colombiana de Biotecnología 13(1) 1039 | spa |
dcterms.references | Chen H, Yan M, Zhu J and Xu X 2011 Enhancement of exopolysaccharide production and antioxidant activity in submerged cultures of Inonotus obliquus by lignocellulose decomposition Journal of Industrial Microbiology and Biotechnology 38(2) 291 | spa |
dcterms.references | Fang Q and Zhong J 2002 Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites-ganoderic acid and polysaccharide Biochemical Engineering Journal 10(1) 61 | spa |
dcterms.references | Gao H and Gu Y 2007 Optimization of polysaccharide and ergosterol production from Agaricusbrasiliensis by fermentation process Biochemical Engineering Journal 33(3) 202 | spa |
dcterms.references | Zhang B and Cheung P 2011 Use of Stimulatory Agents To Enhance the Production of Bioactive Exopolysaccharide from Pleurotus tuber-regium by Submerged Fermentation Journal of Agricultural and Food Chemistry 59(4) 1210 | spa |
dcterms.references | López X, Arboleda C, Segura F and Sanchez F 2015 Producción de polisacáridos a partir de Ganoderma sp aislado en la región Andina Revista Colombiana de Biotecnología 17(2) 44 | spa |
dcterms.references | La T, Gao Y and Zhou S 2004 Products and Safety Concerns International Journal of Medicinal Mushrooms 6 1 | spa |
dcterms.references | Agudelo L, Gutiérrez Y and Urrego S 2017 Effects of aeration, agitation and pH on the production of mycelial biomass and exopolysaccharide from the filamentous fungus Ganoderma lucidum1 DYNA 84(200) 72 | spa |
dcterms.references | Niño L, Peñuela M and Gelves R 2016 CFD simulations for improving gas-liquid mass transfer in a spin filter bioreactor International Journal of Applied Engineering Research 11(9) 6097 | spa |
dcterms.references | Niño L, Gelves R, Ali H, Solsvik J and Jakobsen H 2019 Applicability of a modified breakage and coalescence model based on the complete turbulence spectrum concept for CFD simulation of gas-liquid mass transfer in a stirred tank reactor Chemical Engineering Science 211 1 | spa |
dcterms.references | Pineda J, Soto C and Beltrán L 2014 Stoichiometry equation to describe the growth of the Pleurotus ostreatus ceba-gliie-po-010606 strain Biotecnología Aplicada 31(1) 48 | spa |
dcterms.references | Maarleveld T, Khandelwal R, Olivier B, Teusink B and Bruggeman F 2013 Basic concepts and principles of stoichiometric modeling of metabolic networks Biotechnology journal 8(9) 997 | spa |
dcterms.references | Li H, Zhang D, Yue T, Jiang L, Yu X, Zhao and Xu W 2016 Improved polysaccharide production in a submerged culture of Ganoderma lucidum by the heterologous expression of Vitreoscilla hemoglobin gene Journal of Biotechnology 217 132 | spa |
dcterms.references | Xu J, Ji S, Li H, Zhou J, Duan Y, Dang Z and Mo M 2015 Increased polysaccharide production and biosynthetic gene expressions in a submerged culture of Ganoderma lucidum by the overexpression of the homologous α-phosphoglucomutase gene Bioprocess and Biosystems Engineering 38(2) 399 | spa |
dc.publisher.place | Reino Unido | spa |
dc.relation.citationedition | Vol. 1655, 012077 (2020) | spa |
dc.relation.citationendpage | 9 | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 1655 | spa |
dc.relation.cites | Araque, J., Niño, L. y Gelves, G. (2020). Industrial scale bioprocess simulation for ganoderma lucidum production using superpro designer. Journal of Physics: Conference Series, 1655, Artículo 012077. https://doi.org/10.1088/1742-6596/1655/1/012077 | |
dc.relation.ispartofjournal | Journal of Physics: Conference Series | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Ambiente y Vida - GIAV [124]