Mostrar el registro sencillo del ítem

dc.contributor.authorNiño, Lilibeth
dc.contributor.authorGelves, German
dc.contributor.authorRivera, Christian
dc.date.accessioned2021-11-27T16:10:56Z
dc.date.available2021-11-27T16:10:56Z
dc.date.issued2017-07
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1493
dc.description.abstractPhycocyanin is a high-value chromo-protein used in various industries. In this research, a simulation study of kinetics is carried out to identify different light spectra effects on microbial growth and phycocyanin production from the cyanobacteria Spirulina platensis. The results are compared with experimental data obtained from previous studies, and an acceptable accuracy is achieved in all the evaluated light spectra. Particular emphasis was placed on determining axial kinetic velocities simulated at different spectra regarding the latency, exponential and stationary microbial growth phases. According to the results obtained, cells grown in exponential phase lighted with red spectrum tend to resist the photo-limitation to a greater degree than cell exposure to white, green and yellow light. The latter is because phycocyanin allows a more excellent wavelength absorption from the red light. Contrarily, the light intensity for all spectra is reduced by around 80% at the inner bioreactor area regarding the intensity reached on the equipment surface during the stationary phase. Also, cell growth and phycocyanin production kinetic rates tend to be close to zero for all spectra, considering more than 50% of the inner bioreactor zone. This finding found in this research may be a key factor for the design of new photobioreactors so that these dark areas could be overcome by installing rotating internal lighting systems to guarantee the photosynthesis process of cyanobacteria in all regions of the bioreactor and thus avoid the phenomenon of photo-limitation due to low light intensities.eng
dc.format.extent12 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSouth African Journal of Chemical Engineeringspa
dc.relation.ispartofSouth African Journal of Chemical Engineering ISSN: 1026-9185, 2021 vol:37 fasc: N/A págs: 167 - 178
dc.rights2021 The Author(s). Published by Elsevier B.V. on behalf of Institution of Chemical Engineers. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).eng
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S1026918521000275?via%3Dihub#!spa
dc.titleModeling of phycocyanin production from Spirulina platensis using different light-emitting diodeseng
dc.typeArtículo de revistaspa
dcterms.referencesAiba, 1982 S. Aiba Growth kinetics of photosynthetic microorganisms Adv. Biochem. Eng. Biotechnol., 23 (1982), p. 85spa
dcterms.referencesBekirogullari et al., 2017 M. Bekirogullari, I.S. Fragkopoulos, J.K. Pittman, C. Theodoropoulos Production of lipid-based fuels and chemicals from microalgae: an integrated experimental and model-based optimization study Algal Res, 23 (2017), pp. 78-87spa
dcterms.referencesCaicedo et al., 2020 Y. Caicedo, C. Suarez, G. Gelves Evaluation of preliminary plant design for Chlorella vulgaris microalgae production focused on cosmetics purposes J. Phys. Conf. Ser., 1655 (2020), pp. 1-9spa
dcterms.referencesChen et al., 2010 H. Chen, J. Wu, C. Wang, C. Fu, C. Shieh, C. Chen, Y. Liu Modeling on chlorophyll-a and phycocyanin production by Spirulina platensis under various light-emitting diodes Biochem. Eng. J., 53 (1) (2010), pp. 52-56spa
dcterms.referencesChisti, 2020 Y. Chisti Microalgae biotechnology: a brief introduction Handbook of Microalgae-Based Processes and Products (2020), pp. 3-23, 10.1016/b978-0-12-818536-0.00001-4spa
dcterms.referencesContois, 1959 D. Contois Kinetics of bacterial growth—Relationship between population density and specific growth rate of continuous cultures J. Gen. Microbiol., 21 (1) (1959), pp. 40-50spa
dcterms.referencesDel Rio-Chanona and Zhang, 2018 E. Del Rio-Chanona, D. Zhang A bilevel programming approach to optimize C-phycocyanin bio-production under uncertainty IFAC-Papers OnLine, 51 (18) (2018), pp. 209-214spa
dcterms.referencesEriksen, 2008 N. Eriksen Production of phycocyanin–a pigment with applications in biology, biotechnology, foods and medicine Appl. Microbiol. Biotechnol., 80 (2008), pp. 1-14spa
dcterms.referencesFernández et al., 1998 F. Fernández, F. Camacho, J. Pérez, J. Sevilla, E. Grima Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance Biotechnol. Bioeng., 58 (6) (1998), pp. 605-616spa
dcterms.referencesFratelli et al., 2021 C. Fratelli, M. Burck, M. Assumpção de Amarante, A.C.avalcante Braga Antioxidant potential of nature’s “something blue”: something new in the marriage of biological activity and extraction methods applied to C-phycocyanin Trends Food Sci. Technol., 107 (2021), pp. 309-323spa
dcterms.referencesHu and Sato, 2017 J. Hu, T. Sato A photobioreactor for microalgae cultivation with internal illumination considering flashing light effect and optimized light-source arrangement Energy Convers. Manag., 133 (2017), pp. 558-565spa
dcterms.referencesHuang et al., 2012 Q. Huang, L. Yao, T. Liu, J. Yang Simulation of the light evolution in an annular photobioreactor for the cultivation of Porphyridium cruentum Chem. Eng. Sci., 84 (2012), pp. 718-726spa
dcterms.referencesJiang et al., 2018 L. Jiang, Y. Wang, G. Liu, H. Liu, F. Zhu, H. Ji, B. Li C-Phycocyanin exerts anti-cancer effects via the MAPK signaling pathway in MDA-MB-231 cells Cancer Cell Int, 18 (1) (2018), pp. 1-14spa
dcterms.referencesKandilian et al., 2016 R. Kandilian, A. Soulies, J. Pruvost, B. Rousseau, J. Legrand, L. Pilon Simple method for measuring the spectral absorption cross-section of microalgae Chem. Eng. Sci., 146 (2016), pp. 357-368spa
dcterms.referencesKasiri et al., 2015 S. Kasiri, A. Ulrich, V. Prasad Kinetic modeling and optimization of carbon dioxide fixation using microalgae cultivated in oil-sands process water Chem. Eng. Sci., 137 (2015), pp. 697-711spa
dcterms.referencesKilimtzidi et al., 2019 E. Kilimtzidi, S.C.uellar Bermudez, G. Markou, K. Goiris, D. Vandamme, K. Muylaert Enhanced phycocyanin and protein content of Arthrospira by applying neutral density and red light shading filters: a small-scale pilot experiment J. Chem. Technol. Biotechnol., 94 (6) (2019), pp. 2047-2054spa
dcterms.referencesLuo et al., 2003 P. Luo, A. Kemoun, M. Al-Dahhan, M. Fernández, J. Garcı́a, F. Garcı́a, E. Molina Analysis of photobioreactors for culturing high-value microalgae and cyanobacteria via an advanced diagnostic technique: CARPT Chem. Eng. Sci., 58 (12) (2003), pp. 2519-2527spa
dcterms.referencesMoles et al., 2013 C. Moles, P. Mendes, J. Banga Parameter estimation in biochemical pathways: a comparison of global optimization methods Genome Res, 13 (2013), pp. 2467-2474spa
dcterms.referencesMonod, 1949 J. Monod The growth of bacterial cultures Annu. Rev. Microbiol., 3 (1949), pp. 371-394spa
dcterms.referencesNaichia and Jen, 2009 Y. Naichia, C. Jen High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation Renew. Sustain. Energy Rev., 13 (8) (2009), pp. 2175-2180spa
dcterms.referencesNarukawa et al., 2006 Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, T. Mukai Ultra-high efficiency white light emitting diodes Jpn J Appl Phys., 45 (41) (2006), pp. 1084-1086spa
dcterms.referencesPark and Dinh, 2019 J. Park, T. Dinh Contrasting effects of monochromatic LED lighting on growth, pigments and photosynthesis in the commercially important cyanobacterium Arthrospira maxima Bioresour. Technol., 291 (2019), pp. 1-12spa
dcterms.referencesPrates et al., 2018 D. Prates, E. Radmann, J. Duarte, M. Morais, J. Costa Spirulina cultivated under different light emitting diodes: enhanced cell growth and phycocyanin production Bioresour. Technol., 256 (2018), pp. 38-43spa
dcterms.referencesPriyadarshani and Rath, 2012 I. Priyadarshani, B. Rath Commercial and industrial applications of micro algae–A review J. Algal Biomass Utln., 3 (4) (2012), pp. 89-100spa
dcterms.referencesRatha et al., 2021 S. Ratha, N. Renuka, I. Rawat, F. Bux Prospectives of algae derived nutraceuticals as supplements for combating COVID-19 and human coronavirus diseases Nutrition, 86 (2021), pp. 1-6spa
dcterms.referencesRebolledo-Oyarce et al., 2019 J. Rebolledo-Oyarce, J. Mejía-López, G. García G, L. Rodríguez-Córdova, C. Sáez-Navarrete Novel photobioreactor design for the culture of Dunaliella tertiolecta - Impact of color in the growth of microalgae Bioresour Technol, 289 (2019), pp. 1-9spa
dcterms.referencesWang et al., 2016 X. Wang, P. Zhang, Y. Wu, L. Zhang Effect of light quality on growth, ultrastructure, pigments, and membrane lipids of Pyropia haitanensis J. Appl. Phycol., 3 (16) (2016), pp. 1-9spa
dcterms.referencesWicaksono et al., 2019 H. Wicaksono, W. Satyantini, E. Masithah The spectrum of light and nutrients required to increase the production of phycocyanin Spirulina platensis IOP Conf. Ser. Earth Environ. Sci., 236 (2019), pp. 1-9spa
dcterms.referencesXie et al., 2015 Y. Xie, Y. Jin, X. Zeng, J. Chen, Y. Lu, K. Jing Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation Bioresour. Technol., 180 (2015), pp. 281-287spa
dcterms.referencesYousuf, 2020 A. Yousuf Chapter 1 Fundamentals of Microalgae Cultivation. Microalgae Cultivation for Biofuels Production (2020), pp. 1-9, 10.1016/b978-0-12-817536-1.00001-1spa
dcterms.referencesZhang et al., 2015a D. Zhang, P. Dechatiwongse, K. Hellgardt Modelling light transmission, cyanobacterial growth kinetics and fluid dynamics in a laboratory scale multiphase photo-bioreactor for biological hydrogen production Algal Res, 8 (2015), p. 99spa
dcterms.referencesZhang et al., 2015b D. Zhang, N. Xiao, K. Mahbubani, E. del Rio-Chanona, N. Slater, V. Vassiliadis Bioprocess modelling of biohydrogen production by rhodopseudomonas palustris: model development and effects of operating conditions on hydrogen yield and glycerol conversion efficiency Chem. Eng. Sci., 130 (2015), pp. 68-78spa
dc.identifier.doi10.1016/j.sajce.2021.05.005
dc.publisher.placePaíses Bajosspa
dc.relation.citationeditionVol. 37, (2021)spa
dc.relation.citationendpage178spa
dc.relation.citationstartpage167spa
dc.relation.citationvolume37spa
dc.relation.citesRivera, C., Niño, L., & Gelves, G. (2021). Modeling of Phycocyanin Production from Spirulina platensis using Different Light-Emitting Diodes. South African Journal of Chemical Engineering.
dc.relation.ispartofjournalSouth African Journal of Chemical Engineeringspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalSimulationeng
dc.subject.proposalSpectrumeng
dc.subject.proposalPhycocyanineng
dc.subject.proposalBiomasseng
dc.subject.proposalConcentrationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem