Mostrar el registro sencillo del ítem
Modeling of phycocyanin production from Spirulina platensis using different light-emitting diodes
dc.contributor.author | Niño, Lilibeth | |
dc.contributor.author | Gelves, German | |
dc.contributor.author | Rivera, Christian | |
dc.date.accessioned | 2021-11-27T16:10:56Z | |
dc.date.available | 2021-11-27T16:10:56Z | |
dc.date.issued | 2017-07 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1493 | |
dc.description.abstract | Phycocyanin is a high-value chromo-protein used in various industries. In this research, a simulation study of kinetics is carried out to identify different light spectra effects on microbial growth and phycocyanin production from the cyanobacteria Spirulina platensis. The results are compared with experimental data obtained from previous studies, and an acceptable accuracy is achieved in all the evaluated light spectra. Particular emphasis was placed on determining axial kinetic velocities simulated at different spectra regarding the latency, exponential and stationary microbial growth phases. According to the results obtained, cells grown in exponential phase lighted with red spectrum tend to resist the photo-limitation to a greater degree than cell exposure to white, green and yellow light. The latter is because phycocyanin allows a more excellent wavelength absorption from the red light. Contrarily, the light intensity for all spectra is reduced by around 80% at the inner bioreactor area regarding the intensity reached on the equipment surface during the stationary phase. Also, cell growth and phycocyanin production kinetic rates tend to be close to zero for all spectra, considering more than 50% of the inner bioreactor zone. This finding found in this research may be a key factor for the design of new photobioreactors so that these dark areas could be overcome by installing rotating internal lighting systems to guarantee the photosynthesis process of cyanobacteria in all regions of the bioreactor and thus avoid the phenomenon of photo-limitation due to low light intensities. | eng |
dc.format.extent | 12 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | South African Journal of Chemical Engineering | spa |
dc.relation.ispartof | South African Journal of Chemical Engineering ISSN: 1026-9185, 2021 vol:37 fasc: N/A págs: 167 - 178 | |
dc.rights | 2021 The Author(s). Published by Elsevier B.V. on behalf of Institution of Chemical Engineers. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). | eng |
dc.source | https://www.sciencedirect.com/science/article/pii/S1026918521000275?via%3Dihub#! | spa |
dc.title | Modeling of phycocyanin production from Spirulina platensis using different light-emitting diodes | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Aiba, 1982 S. Aiba Growth kinetics of photosynthetic microorganisms Adv. Biochem. Eng. Biotechnol., 23 (1982), p. 85 | spa |
dcterms.references | Bekirogullari et al., 2017 M. Bekirogullari, I.S. Fragkopoulos, J.K. Pittman, C. Theodoropoulos Production of lipid-based fuels and chemicals from microalgae: an integrated experimental and model-based optimization study Algal Res, 23 (2017), pp. 78-87 | spa |
dcterms.references | Caicedo et al., 2020 Y. Caicedo, C. Suarez, G. Gelves Evaluation of preliminary plant design for Chlorella vulgaris microalgae production focused on cosmetics purposes J. Phys. Conf. Ser., 1655 (2020), pp. 1-9 | spa |
dcterms.references | Chen et al., 2010 H. Chen, J. Wu, C. Wang, C. Fu, C. Shieh, C. Chen, Y. Liu Modeling on chlorophyll-a and phycocyanin production by Spirulina platensis under various light-emitting diodes Biochem. Eng. J., 53 (1) (2010), pp. 52-56 | spa |
dcterms.references | Chisti, 2020 Y. Chisti Microalgae biotechnology: a brief introduction Handbook of Microalgae-Based Processes and Products (2020), pp. 3-23, 10.1016/b978-0-12-818536-0.00001-4 | spa |
dcterms.references | Contois, 1959 D. Contois Kinetics of bacterial growth—Relationship between population density and specific growth rate of continuous cultures J. Gen. Microbiol., 21 (1) (1959), pp. 40-50 | spa |
dcterms.references | Del Rio-Chanona and Zhang, 2018 E. Del Rio-Chanona, D. Zhang A bilevel programming approach to optimize C-phycocyanin bio-production under uncertainty IFAC-Papers OnLine, 51 (18) (2018), pp. 209-214 | spa |
dcterms.references | Eriksen, 2008 N. Eriksen Production of phycocyanin–a pigment with applications in biology, biotechnology, foods and medicine Appl. Microbiol. Biotechnol., 80 (2008), pp. 1-14 | spa |
dcterms.references | Fernández et al., 1998 F. Fernández, F. Camacho, J. Pérez, J. Sevilla, E. Grima Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance Biotechnol. Bioeng., 58 (6) (1998), pp. 605-616 | spa |
dcterms.references | Fratelli et al., 2021 C. Fratelli, M. Burck, M. Assumpção de Amarante, A.C.avalcante Braga Antioxidant potential of nature’s “something blue”: something new in the marriage of biological activity and extraction methods applied to C-phycocyanin Trends Food Sci. Technol., 107 (2021), pp. 309-323 | spa |
dcterms.references | Hu and Sato, 2017 J. Hu, T. Sato A photobioreactor for microalgae cultivation with internal illumination considering flashing light effect and optimized light-source arrangement Energy Convers. Manag., 133 (2017), pp. 558-565 | spa |
dcterms.references | Huang et al., 2012 Q. Huang, L. Yao, T. Liu, J. Yang Simulation of the light evolution in an annular photobioreactor for the cultivation of Porphyridium cruentum Chem. Eng. Sci., 84 (2012), pp. 718-726 | spa |
dcterms.references | Jiang et al., 2018 L. Jiang, Y. Wang, G. Liu, H. Liu, F. Zhu, H. Ji, B. Li C-Phycocyanin exerts anti-cancer effects via the MAPK signaling pathway in MDA-MB-231 cells Cancer Cell Int, 18 (1) (2018), pp. 1-14 | spa |
dcterms.references | Kandilian et al., 2016 R. Kandilian, A. Soulies, J. Pruvost, B. Rousseau, J. Legrand, L. Pilon Simple method for measuring the spectral absorption cross-section of microalgae Chem. Eng. Sci., 146 (2016), pp. 357-368 | spa |
dcterms.references | Kasiri et al., 2015 S. Kasiri, A. Ulrich, V. Prasad Kinetic modeling and optimization of carbon dioxide fixation using microalgae cultivated in oil-sands process water Chem. Eng. Sci., 137 (2015), pp. 697-711 | spa |
dcterms.references | Kilimtzidi et al., 2019 E. Kilimtzidi, S.C.uellar Bermudez, G. Markou, K. Goiris, D. Vandamme, K. Muylaert Enhanced phycocyanin and protein content of Arthrospira by applying neutral density and red light shading filters: a small-scale pilot experiment J. Chem. Technol. Biotechnol., 94 (6) (2019), pp. 2047-2054 | spa |
dcterms.references | Luo et al., 2003 P. Luo, A. Kemoun, M. Al-Dahhan, M. Fernández, J. Garcı́a, F. Garcı́a, E. Molina Analysis of photobioreactors for culturing high-value microalgae and cyanobacteria via an advanced diagnostic technique: CARPT Chem. Eng. Sci., 58 (12) (2003), pp. 2519-2527 | spa |
dcterms.references | Moles et al., 2013 C. Moles, P. Mendes, J. Banga Parameter estimation in biochemical pathways: a comparison of global optimization methods Genome Res, 13 (2013), pp. 2467-2474 | spa |
dcterms.references | Monod, 1949 J. Monod The growth of bacterial cultures Annu. Rev. Microbiol., 3 (1949), pp. 371-394 | spa |
dcterms.references | Naichia and Jen, 2009 Y. Naichia, C. Jen High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation Renew. Sustain. Energy Rev., 13 (8) (2009), pp. 2175-2180 | spa |
dcterms.references | Narukawa et al., 2006 Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, T. Mukai Ultra-high efficiency white light emitting diodes Jpn J Appl Phys., 45 (41) (2006), pp. 1084-1086 | spa |
dcterms.references | Park and Dinh, 2019 J. Park, T. Dinh Contrasting effects of monochromatic LED lighting on growth, pigments and photosynthesis in the commercially important cyanobacterium Arthrospira maxima Bioresour. Technol., 291 (2019), pp. 1-12 | spa |
dcterms.references | Prates et al., 2018 D. Prates, E. Radmann, J. Duarte, M. Morais, J. Costa Spirulina cultivated under different light emitting diodes: enhanced cell growth and phycocyanin production Bioresour. Technol., 256 (2018), pp. 38-43 | spa |
dcterms.references | Priyadarshani and Rath, 2012 I. Priyadarshani, B. Rath Commercial and industrial applications of micro algae–A review J. Algal Biomass Utln., 3 (4) (2012), pp. 89-100 | spa |
dcterms.references | Ratha et al., 2021 S. Ratha, N. Renuka, I. Rawat, F. Bux Prospectives of algae derived nutraceuticals as supplements for combating COVID-19 and human coronavirus diseases Nutrition, 86 (2021), pp. 1-6 | spa |
dcterms.references | Rebolledo-Oyarce et al., 2019 J. Rebolledo-Oyarce, J. Mejía-López, G. García G, L. Rodríguez-Córdova, C. Sáez-Navarrete Novel photobioreactor design for the culture of Dunaliella tertiolecta - Impact of color in the growth of microalgae Bioresour Technol, 289 (2019), pp. 1-9 | spa |
dcterms.references | Wang et al., 2016 X. Wang, P. Zhang, Y. Wu, L. Zhang Effect of light quality on growth, ultrastructure, pigments, and membrane lipids of Pyropia haitanensis J. Appl. Phycol., 3 (16) (2016), pp. 1-9 | spa |
dcterms.references | Wicaksono et al., 2019 H. Wicaksono, W. Satyantini, E. Masithah The spectrum of light and nutrients required to increase the production of phycocyanin Spirulina platensis IOP Conf. Ser. Earth Environ. Sci., 236 (2019), pp. 1-9 | spa |
dcterms.references | Xie et al., 2015 Y. Xie, Y. Jin, X. Zeng, J. Chen, Y. Lu, K. Jing Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation Bioresour. Technol., 180 (2015), pp. 281-287 | spa |
dcterms.references | Yousuf, 2020 A. Yousuf Chapter 1 Fundamentals of Microalgae Cultivation. Microalgae Cultivation for Biofuels Production (2020), pp. 1-9, 10.1016/b978-0-12-817536-1.00001-1 | spa |
dcterms.references | Zhang et al., 2015a D. Zhang, P. Dechatiwongse, K. Hellgardt Modelling light transmission, cyanobacterial growth kinetics and fluid dynamics in a laboratory scale multiphase photo-bioreactor for biological hydrogen production Algal Res, 8 (2015), p. 99 | spa |
dcterms.references | Zhang et al., 2015b D. Zhang, N. Xiao, K. Mahbubani, E. del Rio-Chanona, N. Slater, V. Vassiliadis Bioprocess modelling of biohydrogen production by rhodopseudomonas palustris: model development and effects of operating conditions on hydrogen yield and glycerol conversion efficiency Chem. Eng. Sci., 130 (2015), pp. 68-78 | spa |
dc.identifier.doi | 10.1016/j.sajce.2021.05.005 | |
dc.publisher.place | Países Bajos | spa |
dc.relation.citationedition | Vol. 37, (2021) | spa |
dc.relation.citationendpage | 178 | spa |
dc.relation.citationstartpage | 167 | spa |
dc.relation.citationvolume | 37 | spa |
dc.relation.cites | Rivera, C., Niño, L., & Gelves, G. (2021). Modeling of Phycocyanin Production from Spirulina platensis using Different Light-Emitting Diodes. South African Journal of Chemical Engineering. | |
dc.relation.ispartofjournal | South African Journal of Chemical Engineering | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.subject.proposal | Simulation | eng |
dc.subject.proposal | Spectrum | eng |
dc.subject.proposal | Phycocyanin | eng |
dc.subject.proposal | Biomass | eng |
dc.subject.proposal | Concentration | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Ambiente y Vida - GIAV [124]