Mostrar el registro sencillo del ítem

dc.contributor.authorPeña Rodriguez, Gabriel
dc.contributor.authorRivera-Suárez, Paola A.
dc.contributor.authorGonzález-Gómez, César H.
dc.contributor.authorParra-Vargas, Carlos A.
dc.contributor.authorGarzón-Posada, Andrés O.
dc.contributor.authorLandínez-Téllez, David A.
dc.contributor.authorRoa-Rojas, Jairo
dc.date.accessioned2021-11-26T23:13:57Z
dc.date.available2021-11-26T23:13:57Z
dc.date.issued2018-01-15
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1473
dc.description.abstractSe reporta el efecto de la concentración de polvos de magnetita (Fe3O4) sobre las propiedades eléctricas y magnéticas de un material compuesto a base de resina de poliéster termoestable. Las muestras se elaboraron mediante el método de colado manual en concentraciones de: 60-40, 70-30, 80-20, 90-10 y 100-0 (% en peso), donde la fase mayoritaria es la resina y la minoritaria los óxidos de Fe3O4. La estructura cristalina se estudió usando la técnica de difracción de rayos X y la caracterización superficial tuvo lugar a través de la técnica de microscopía electrónica de barrido. Se midió la respuesta eléctrica por medio de curvas de polarización eléctrica en función del campo eléctrico y de resistividad eléctrica volumétrica a través de un electrómetro. La respuesta magnética se determinó mediante curvas de magnetización en función de la intensidad de campo magnético aplicado y en función de la temperatura. El análisis estructural indica que el porcentaje de cristalinidad aumenta a medida que se adiciona la concentración de Fe3O4 a las muestras. La caracterización eléctrica del material evidencia que la resistividad volumétrica disminuye con el incremento de magnetita, mostrando una transición aislante-conductor, con valores de la constante dieléctrica cada vez mayores. La caracterización magnética evidencia un aumento lineal de la magnetización de saturación y del momento magnético en función de la cantidad de magnetita adicionada a la matriz polimérica, mientras que la coercitividad evidencia comportamientos de materiales magnéticos blandos tanto en T˃TV como en T<TV, donde TV representa la temperatura de Verweyspa
dc.description.abstractThis study reports the effect of the concentration of magnetite powders (Fe3O4) on the electrical and magnetic properties of a resin-based composite of thermoset polyester. The samples were prepared by the casting method at different concentrations: 60-40, 70-30, 80-20, 90-10 and 100-0 (% in weight), where the primary phase was resin and the secondary, Fe3O4 powders. The crystalline structure was studied using X-ray diffraction and surface characterization was carried out applying the scanning electron microscopy technique. The electrical response was measured by electric polarization curves as a function of the electric field; and the volumetric electrical resistivity, by an electrometer. The magnetic response was determined by magnetization curves as a function of temperature and intensity of the applied magnetic field. The structural analysis indicates that crystallinity increases as higher concentrations of Fe3O4 are added to the samples. The electrical characterization of the material reveals that the volumetric resistivity decreases as the content of magnetite increases. These reactions indicate an insulation-conductor transition with increasing dielectric constant values. The magnetic characterization presents a linear increase of the saturation of magnetization and magnetic moment as a function of the amount of magnetite added to the polymer matrix, whereas the coercivity shows behaviors of soft magnetic materials for T ˃ Tv and for T < Tv, where Tv represents the temperature of Verwey.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherTecnoLógicasspa
dc.relation.ispartofTecnoLógicas
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.sourcehttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/708spa
dc.titleEfecto de la concentración de magnetita en la estructura, propiedades eléctricas y magnéticas de un material compuesto a base de resina de poliéstereng
dc.typeArtículo de revistaspa
dcterms.referencesG. Martínez Barrera, E. Martínez Cruz, and M. Martínez López, “Concreto polimérico reforzado con fibras: Efecto de la Radiación Gamma,” Rev. Iberoam. Polímeros, vol. 13, no. 4, pp. 169–178, 2012.spa
dcterms.referencesJ. Kotek, I. Kelnar, J. Baldrian, and M. Raab, “Tensile behaviour of isotactic polypropylene modified by specific nucleation and active fillers,” Eur. Polym. J., vol. 40, no. 4, pp. 679–684, Apr. 2004.spa
dcterms.referencesL. Y. Jaramillo Zapata and I. D. Patiño Arcila, “Selección de Resinas de Poliéster Insaturado para Procesos de Transferencia de Resina en Molde Cerrado,” Tecno Lógicas, no. 28, pp. 109–127, 2012.spa
dcterms.referencesA. O. Garzón Posada, “Síntesis y caracterización de un material compuesto a base de polietileno de alta densidad y magnetita pulverizada,” Universidad Nacional de Colombia, 2015.spa
dcterms.referencesM. Y. Razzaq, M. Anhalt, L. Frormann, and B. Weidenfeller, “Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers,” Mater. Sci. Eng. A, vol. 444, no. 1–2, pp. 227–235, Jan. 2007.spa
dcterms.referencesB. Weidenfeller, M. Höfer, and F. Schilling, “Thermal and electrical properties of magnetite filled polymers,” Compos. Part A Appl. Sci. Manuf., vol. 33, no. 8, pp. 1041–1053, Aug. 2002.spa
dcterms.referencesI. Kong, S. Hj Ahmad, M. Hj Abdullah, D. Hui, A. Nazlim Yusoff, and D. Puryanti, “Magnetic and microwave absorbing properties of magnetite–thermoplastic natural rubber nanocomposites,” J. Magn. Magn. Mater., vol. 322, no. 21, pp. 3401–3409, Nov. 2010.spa
dcterms.referencesA. O. Garzón Posada, F. Fajardo, D. Landínez, J. Roa, and G. Peña, “Synthesis, Electrical, Structural and Morphological Characterization of a Composite Material Based on Powdered Magnetite and High Density,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 37, no. 144, pp. 57–61, 2013.spa
dcterms.referencesM. Stewart, M. G. Cain, and D. Hall, Ferroelectric Hysteresis Measurement & Analysis, National Physical Laboratory, 1999.spa
dcterms.referencesA. F. Guzmán Escobar, “Síntesis y caracterización de materiales cerámicos compuestos por caolín y alúmina,” Universidad Nacional de Colombia, Bogotá, Colombia, 2014.spa
dcterms.referencesD. Fink, H. Wayne Beaty, and J. Carroll, Manual práctico de electricidad para ingenieros, Primera Ed. Barcelona, España: Reverté S.A., 1981.spa
dcterms.referencesX. Zhang, O. Alloul, J. Zhu, Q. He, Z. Luo, H. A. Colorado, N. Haldolaarachchige, D. P. Young, T. D. Shen, S. Wei, and Z. Guo, “Iron-core carbon-shell nanoparticles reinforced electrically conductive magnetic epoxy resin nanocomposites with reduced flammability,” RSC Adv., vol. 3, no. 24, p. 9453, 2013.spa
dcterms.referencesJ. Guo, X. Zhang, H. Gu, Y. Wang, X. Yan, D. Ding, J. Long, S. Tadakamalla, Q. Wang, M. A. Khan, J. Liu, X. Zhang, B. L. Weeks, L. Sun, D. P. Young, S. Wei, and Z. Guo, “Reinforced magnetic epoxy nanocomposites with conductive polypyrrole nanocoating on nanomagnetite as a coupling agent,” RSC Adv., vol. 4, no. 69, p. 36560, Aug. 2014.spa
dcterms.referencesS. Liong, “A multifunctional approach to development, fabrication, and characterization of Fe3O4 composites,” Georgia Institute of Technology, Atlanta, Georgia, 2005.spa
dcterms.referencesG. D. Limited, “CES EduPack,” Granta Design Limited. Cambridge, United Kingdom, 2013.spa
dcterms.referencesI. Kong, S. H. Ahmad, M. H. Abdullah, A. N. Yusoff, M. Rusop, and T. Soga, “The Effect Of Temperature On Magnetic Behavior Of Magnetite Nanoparticles And Its Nanocomposites,” in AIP Conference Proceedings, 2009, vol. 1136, no. 1, pp. 830–834.spa
dcterms.referencesN. Mokhtar, M. H. Abdullah, and S. H. Ahmad, “Structural and Magnetic Properties of Type-M Barium Ferrite – Thermoplastic Natural Rubber Nanocomposites,” Sains Malaysiana, vol. 41, no. 9, pp. 1125–1131, 2012.spa
dcterms.referencesZ. Guo, S. Park, H. T. Hahn, S. Wei, M. Moldovan, A. B. Karki, and D. P. Young, “Magnetic and electromagnetic evaluation of the magnetic nanoparticle filled polyurethane nanocomposites,” J. Appl. Phys., vol. 101, no. 9, p. 09M511, May 2007.spa
dcterms.referencesL. A. Ramajo, A. A. Cristóbal, P. M. Botta, J. M. Porto López, M. M. Reboredo, and M. S. Castro, “Dielectric and magnetic response of Fe3O4/epoxy composites,” Compos. Part A Appl. Sci. Manuf., vol. 40, no. 4, pp. 388–393, Apr. 2009.spa
dcterms.referencesA. Demir, A. Baykal, H. Sözeri, and R. Topkaya, “Low temperature magnetic investigation of Fe3O4 nanoparticles filled into multiwalled carbon nanotubes,” Synth. Met., vol. 187, pp. 75–80, Jan. 2014.spa
dcterms.referencesD. Donescu, V. Raditoiu, C. I. Spataru, R. Somoghi, M. Ghiurea, C. Radovici, R. C. Fierascu, G. Schinteie, A. Leca, and V. Kuncser, “Superparamagnetic magnetite–divinylbenzene–maleic anhydride copolymer nanocomposites obtained by dispersion polymerization,” Eur. Polym. J., vol. 48, no. 10, pp. 1709–1716, Oct. 2012.spa
dcterms.referencesL. Gu, X. He, and Z. Wu, “Mesoporous Fe3O4 /hydroxyapatite composite for targeted drug delivery,” Mater. Res. Bull., vol. 59, pp. 65–68, Nov. 2014.spa
dcterms.referencesM. Di Marco, M. Port, P. Couvreur, C. Dubernet, P. Ballirano, and C. Sadun, “Structural Characterization of Ultrasmall Superparamagnetic Iron Oxide (USPIO) Particles in Aqueous Suspension by Energy Dispersive X-ray Diffraction (EDXD),” J. Am. Chem. Soc., vol. 128, no. 31, pp. 10054–10059, Aug. 2006.spa
dcterms.referencesL. Néel, “Théorie du trainage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites,” Ann. Géophys, vol. 5, pp. 99–136, 1949.spa
dcterms.referencesM. Bohra, S. Prasad, N. Venketaramani, N. Kumar, S. C. Sahoo, and R. Krishnan, “Magnetic properties of magnetite thin films close to the Verwey transition,” J. Magn. Magn. Mater., vol. 321, no. 22, pp. 3738–3741, Nov. 2009.spa
dcterms.referencesW. Tabis, “Structural changes in magnetite in vicinity of the Verwey transition observed with various x-ray diffraction methods,” AGH University of Science and Technology, Kraków, Polonia, 2010.spa
dcterms.referencesM. Puca, E. Tacuri, M. Hurtado, M. Guerrero, A. Figueroa, N. Rojas, J. Cjuno, S. García, and R. Lopez, “Estudio de las propiedades magnéticas de nanopartículas de poliestireno poroso cargadas con magnetita,” Rev. Peru. química e Ing. química, vol. 15, no. 2, pp. 5–12, 2012.spa
dcterms.referencesJ. Smit and H. Wijn, Ferrites: physical properties of ferrimagnetic oxides in relation to their technical applications. Eindhoven: N.V. Philips Gloeilampenfabrieken, 1959.spa
dcterms.referencesS. Yáñez Vilar, M. Sánchez Andújar, S. Castro García, J. Mira Pérez, J. Rivas, and M. A. Señarís Rodríguez, “Magnetocapacidad en nanopartículas de Fe3O4 y NiFe2O4,” Boletín la Soc. Española Cerámica y Vidr., vol. 49, no. 1, pp. 81–88, 2010.spa
dcterms.referencesY. Pittini-Yamada, E. A. Périgo, Y. de Hazan, and S. Nakahara, “Permeability of hybrid soft magnetic composites,” Acta Mater., vol. 59, no. 11, pp. 4291–4302, Jun. 2011.spa
dcterms.referencesP. Fulay and J.-K. Lee, Electronic, Magnetic, and Optical Materials, 2nd ed. CRC Press LLC, 2016.spa
dcterms.referencesA. Hernando and J. M. Rojo, Física de los materiales magnéticos, 1st ed. Madrid, España: Editorial Sintesis, 2001.spa
dcterms.referencesJ. Cardona Vásquez, “Producción y caracterización de nuevos materiales multiferróicos de la familia RMn1-xFexO3 (R=Ho, Dy, Gd),” Universidad Nacional de Colombia, 2014.spa
dcterms.referencesI. Org, “Verwey transition,” in IUPAC Compendium of Chemical Terminology, Research Triagle Park, NC: IUPAC, 2014.spa
dcterms.referencesK. M. Reddy, N. P. Padture, A. Punnoose, and C. Hanna, “Magnetoresistance characteristics in individual Fe3O4 single crystal nanowire,” J. Appl. Phys., vol. 117, no. 17, p. 17E115, May 2015.spa
dcterms.referencesA. C. Zapata Dederlé, “Síntesis y caracterización de Magnetitas Pura y dopadas con Cerio y Titanio,” Universidad de Antioquia, 2008.spa
dcterms.referencesZ. Zhang, N. Church, S.-C. Lappe, M. Reinecker, A. Fuith, P. J. Saines, R. J. Harrison, W. Schranz, and M. A. Carpenter, “Elastic and anelastic anomalies associated with the antiferromagnetic ordering transition in wüstite, FexO,” J. Phys. Condens. Matter, vol. 24, no. 21, p. 13, May 2012.spa
dc.identifier.doihttps://doi.org/10.22430/22565337.708
dc.publisher.placeBogota , Colombiaspa
dc.relation.citationeditionVol.21 No.41.(2018)spa
dc.relation.citationendpage27spa
dc.relation.citationissue41 (2018)spa
dc.relation.citationstartpage13spa
dc.relation.citationvolume21spa
dc.relation.citesG. Peña-Rodríguez, “Effect of the concentration of magnetite on the structure, electrical and magnetic properties of a polyester resin-based composite”, TecnoL., vol. 21, no. 41, pp. 13-27, Jan. 2018.
dc.relation.ispartofjournalTecnoLógicasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalMateriales compuestosspa
dc.subject.proposalmagnetitaspa
dc.subject.proposalpolarización eléctricaspa
dc.subject.proposalresistividad volumétricaspa
dc.subject.proposalcomportamiento magnéticospa
dc.subject.proposalDRXspa
dc.subject.proposalComposite materialseng
dc.subject.proposalmagnetiteeng
dc.subject.proposalelectric polarizationeng
dc.subject.proposalvolumetric resistivityeng
dc.subject.proposalmagnetic behavioreng
dc.subject.proposalXRDeng
dc.title.translatedEffect of the concentration of magnetite on the structure, electrical and magnetic properties of a polyester resin-based composite
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem