Mostrar el registro sencillo del ítem
Manufacture of oxy-acetylene thermally sprayed coating on refractory subtrates from unconventional feedstock material
dc.contributor.author | Cadavid, Edwin | |
dc.contributor.author | Vargas, Fabio | |
dc.contributor.author | LÓPEZ GÓMEZ, MARIA ESPERANZA | |
dc.contributor.author | Mesa, Carlos | |
dc.contributor.author | Vargas, Fabio | |
dc.contributor.author | LATORRE, GUILLERMO | |
dc.contributor.author | Peña Rodriguez, Gabriel | |
dc.date.accessioned | 2021-11-26T22:00:24Z | |
dc.date.available | 2021-11-26T22:00:24Z | |
dc.date.issued | 2018-04-01 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1471 | |
dc.description.abstract | A chromite mineral and two industrial residues produced in the petrochemical and thermoelectric industries, were selected, characterized, processed and deposited on refractory bricks. By means of X-ray fluorescence and X-ray diffraction the chemical composition and crystallographic phases of raw materials were analyzed, morphology and particle size was determinate using Scanning Electron Microscopy. The materials were deposit by oxyacetylene thermal spray on silica-alumina refractory bricks and high alumina low cement concrete, commercial references ER-40 and CBC-50 from ERECOS S.A.S.. The parameters used for the coating deposition were optimized based on preliminary test and simulations using the Jets&powders software. The chromite mineral coating displayed greater structure homogeneity than the other two coatings; the last ones presented partially melted particles and high porosity. However, based on the chemical composition, the response to adhesion test and the crystallographic phases present in the coatings, all of them are potential candidates to be used as protective barriers against corrosive effects on refractories. | eng |
dc.description.abstract | Se seleccionaron, caracterizaron, procesaron y depositaron sobre ladrillos refractarios, dos residuos industriales provenientes de procesos de la industria petroquímica y termoeléctrica, así como un mineral de cromita. La composición química y las fases cristalográficas de cada uno de estos polvos fueron determinadas mediante Fluorescencia y Difracción de Rayos X, mientras que la morfología y tamaño de partícula fueron analizados mediante Microscopía Electrónica de Barrido. Estos polvos fueron depositados mediante proyección térmica oxiacetilénica sobre ladrillos refractarios silico-aluminosos y concretos de alta alúmina de bajo cemento, cuyas referencias comerciales de la empresa Erecos S.A.S. son ER-40 y CBC-50 respectivamente. Los parámetros utilizados para la elaboración de los recubrimientos fueron optimizados a partir de recubrimientos elaborados previamente y de los resultados de simulaciones realizadas con el software Jets&poudres. De los recubrimientos obtenidos el que presentó mayor homogeneidad en su estructura fue el elaborado con el mineral de cromita, los demás evidenciaron gran cantidad de partículas sin fundir y mayor porosidad. Sin embargo, por la composición química, su buena adherencia y las fases presentes en los recubrimientos todos son potenciales candidatos para ser usados como medio protector contra el deterioro de refractarios expuestos a altas temperaturas. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | DYNA | spa |
dc.relation.ispartof | DYNA | |
dc.rights | Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. | eng |
dc.source | https://revistas.unal.edu.co/index.php/dyna/article/view/65539 | spa |
dc.title | Manufacture of oxy-acetylene thermally sprayed coating on refractory subtrates from unconventional feedstock material | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Herrmann, M., Toma, F.L., Berger, L.M., Kaiser, G. and Stahr, C.C., Comparative study of the corrosion resistance of thermally sprayed ceramic coatings and their bulk ceramic counterparts. J Eur Ceram Soc., 34(2), pp. 493-504, 2014. DOI: 10.1016/j.jeurceramsoc.2013.08.033. | spa |
dcterms.references | Vargas, F., Ageorges, H., Fauchais, P., López, M.E. and Calderon, J.A., Permeation of saline solution in Al2O3-13wt.% TiO2 coatings elaborated by atmospheric plasma spraying. Surf Coatings Technol., 220, pp. 85-89, 2013. DOI: 10.1016/j.surfcoat.2012.11.038. | spa |
dcterms.references | Liu, H.F., Xiong, X., Li, X.B. and Wang Y.L., Hot corrosion behavior of Sc2O3-Y2O3-ZrO2 thermal barrier coatings in presence of Na2SO4+V2O5 molten salt. Corros Sci., 85, pp. 87-93, 2014. DOI: 10.1016/j.corsci.2014.04.001. | spa |
dcterms.references | Fauchais, P.L., Heberlein, J.V.R. and Boulos, M.I., Thermal spray fundamentals from powder to part. Boston, MA: Springer US; 2014. DOI: 10.1007/978-0-387-68991-3. | spa |
dcterms.references | Secosan, I.F., Utu, D., Serban, V.A. and Brandl, W., Wear resistance of internal WC-CoCr coatings produced by high velocity oxy-fuel spraying. 4th Int Conf Adv Mater Struct AMS 2011. 188, pp.416-421, 2012. DOI: 10.4028/www.scientific.net/SSP.188.416. | spa |
dcterms.references | Bolelli, G., Cannillo, V., Lugli, C., Lusvarghi, L. and Manfredini, T., Plasma-sprayed graded ceramic coatings on refractory materials for improved chemical resistance. J Eur Ceram Soc., 26(13), pp. 2561-2579, 2006. DOI: 10.1016/j.jeurceramsoc.2005.07.066. | spa |
dcterms.references | Li, J.F., Li, L. and Stott, F.H., Multi-layered surface coatings of refractory ceramics prepared by combined laser and flame spraying. Surf Coatings Technol., 180, pp. 500-505, 2004. DOI: 10.1016/j.surfcoat.2003.10.127. | spa |
dcterms.references | Araque-Pabón, M., Peña-Rodríguez, G. y Vargas-Galvis, F., Desempeño mecánico y tribológico de baldosas cerámicas de arcilla roja recubiertas por proyección térmica a partir de alúmina. Tecno Lógicas, 18, pp. 125-135, 2015. | spa |
dcterms.references | Pawlowski, L., Strategic oxides for thermal spraying: problems of availability and evolution of prices. Surf Coatings Technol., 220, pp. 14-19, 2013. DOI: 10.1016/j.surfcoat.2012.04.096. | spa |
dcterms.references | Pateyron, B., Jets&Poudres and T&Twinner. [online]. Available at: http://www.unilim.fr/spcts. | spa |
dcterms.references | ASTM. Standard Test Method for Pull-Off Strength of coatings using portable adhesion, 2014, pp. 1-16. DOI: 10.1520/D4541-09E01.2. | spa |
dcterms.references | Khan, N.M.T.B., High pressure and high temperature study of magnesiochromite and its geophysical implications, Thesis MSc., University of Western, Ontario, Canada, 2015. | spa |
dcterms.references | Gehre, P., Aneziris, C.G., Berek, H. and Parr, C., Reinmller M., Corrosion of magnesium aluminate spinel-rich refractories by sulphur-containing slag. J Eur Ceram Soc., 35(5), pp. 1613-1620, 2015. DOI: 10.1016/j.jeurceramsoc.2014.11.031. | spa |
dcterms.references | Moritz, K., Aneziris, C.G., Hesky, D. and Gerlach, N., Magnesium aluminate spinel ceramics containing aluminum titanate for refractory applications. J Ceram Sci Technol., 5(2), pp. 125-130, 2014. DOI: 10.4416/JCST2013-00037. | spa |
dcterms.references | Ping, L.R., Azad, A.M. and Dung, T.W., Magnesium aluminate (MgAl2O4) spinel produced via self-heat-sustained (SHS) technique. Mater Res Bull., 36(7), pp. 1417-1430, 2001. DOI: 10.1016/S0025-5408(01)00622-5. | spa |
dcterms.references | Gehre, P., Aneziris, C.G., Veres, D., Parr, C., Fryda, H. and Neuroth, M., Improved spinel-containing refractory castables for slagging gasifiers. J Eur Ceram Soc., 33(6), pp. 1077-1086, 2013. DOI: 10.1016/j.jeurceramsoc.2012.11.011. | spa |
dcterms.references | Ston. R., Thermochemistry of North Carolina olivine in the manufacture of forsterite refractories. J Am Ceram Soc., 22, pp. 342-348, 1939. | spa |
dcterms.references | Tathavakar, V.D., Antony, M.P. and Jha, A.. The physical chemistry of thermal decomposition of South African chromite minerals. Metall Mater Trans B, 36(1), pp. 75-84, 2005. DOI: 10.1007/s11663-005-0008-1. | spa |
dcterms.references | Borovkova, L., Koval’Skaya, K.V. and Poluboyarinov, D., Sintering and thermomechanical properties of magnesiochromite. Refract Ind Ceram., 7, pp. 715-720, 1966. | spa |
dcterms.references | Atkinson, A., Bastid, P. and Liu, Q., Mechanical properties of magnesia-spinel composites. J Am Ceram Soc., 90(8), pp. 2489-96. 2007. DOI: 10.1111/j.1551-2916.2007.01733.x. | spa |
dcterms.references | Sergienko, V.S. and Evtushenko, V.B., The service of reactories in the slide gates of 250-ton steel teeming ladles. Refractories, 27, pp. 705-708, 1987. | spa |
dcterms.references | Othman, A.G.M. and Khalil, N.M., Sintering of magnesia refractories through the formation of periclase-forsterite-spinel phases. Ceram Int., 31(8), pp. 1117-1121, 2005. DOI: 10.1016/j.ceramint.2004.11.011. | spa |
dcterms.references | Soltan, A.M., Wendschuh, M., Willims, H. and Serry, M., Densification and resistance to hydration and slag attack of ilmenite-doped MgO-dolomite refractories in relation to their thermal equilibrium and microfabric. J Eur Ceram Soc., 34(8), pp. 2023-2033, 2014. DOI: 10.1016/j.jeurceramsoc.2014.01.030. | spa |
dcterms.references | Chaudhuri, M. and Banerjee, G., Secondary phases in natural magnesite sintered with addition of titania, ilmenite and zirconia. J Mater Sci., 34(23), pp. 5821-5825, 1999. | spa |
dcterms.references | Lampropoulou, P.G., Katagas, C.G. and Papamantellos, D.C., Composition of periclase and calcium-silicate phases in magnesia refractories derived from natural microcrystalline magnesite. J Am Ceram Soc., 88(6), pp. 1568-1574. 2005. DOI: 10.1111/j.1551-2916.2005.00263.x. | spa |
dcterms.references | Faulkner, L.L., Refractories Handbook. Pittsburgh, Pennsylvania, U.S.A: n.d. | spa |
dcterms.references | Li, J., Wang, Q. and Shen, N.. Magnesium ferrite is a kind of main bonding phase in magnesia refractory materials. Mater Sci Technol Conf Exhib., 2009. | spa |
dcterms.references | Kim, J.W., Shin, P.W., Lee, M.J. and Lee, S.J., Effect of particle size on the strength of a porous nickel aluminate fabricated by a polymer solution route. J Ceram Process Res., 7, pp. 117-121, 2006. | spa |
dcterms.references | Podwórny, J., Wojsa, J. and Gerle, A., Nickel oxide in technology of basic refractory materials - the perspective of use. Mater Ceram., 66(3), pp. 331-335, 2014. | spa |
dcterms.references | Melvyn-Bradley, T.H., An overview of refractory raw materials - Part 1 Alumina. Refract Eng., pp. 21-22, 2011. | spa |
dcterms.references | Ebadzadeh, T. and Lee, W.E., Processing-microstructure-property in mullite-cordierite composites. J Eur Ceram Soc., 2219, pp. 837-848, 1998. | spa |
dcterms.references | Zawrah, M.F.M. and Khalil, N.M., Effect of mullite formation on properties of refractory castables. Ceram Int., 27(6), pp. 689-694, 2001. DOI: 10.1016/S0272-8842(01)00021-9. | spa |
dcterms.references | Sadik, C., El-Amrani, I-E. and Albizane, A., Recent advances in silica-alumina refractory: A review. J Asian Ceram Soc., 2, pp. 83-96, 2014. DOI: 10.1016/j.jascer.2014.03.001. | spa |
dcterms.references | Rabinovich, M., Lightweight mullite-silica refractories. Refract Ind Ceram., 17, pp. 146-147, 1976. | spa |
dcterms.references | Sardy, M., Arib, A., Abbassi, K., El-Moussa, R. and Gomina, M., Elaboration and characterization of mullite refractory products from Moroccan Andalusite. New J Glas Ceram., 2, pp. 121-125, 2012. | spa |
dcterms.references | Davis, J.R., Handbook of thermal spray technology. ASM Intern. USA, 2004. | spa |
dcterms.references | ASTM. Standard test methods for flow rate of metal powders using the hall flowmeter, pp. 213-216, 2014. DOI: 10.1520/B0213-13.2. | spa |
dc.identifier.doi | https://doi.org/10.15446/dyna.v85n205.65539 | |
dc.publisher.place | Bogota , Colombia | spa |
dc.relation.citationedition | Vol.85 No.205.(2018) | spa |
dc.relation.citationendpage | 347 | spa |
dc.relation.citationissue | 205 (2018) | spa |
dc.relation.citationstartpage | 338 | spa |
dc.relation.citationvolume | 85 | spa |
dc.relation.cites | Cadavid, E., Vargas-Galvis, F., López-Gómez, M. E., Mesa, C. M., Vargas, F. A., Latorre, G., & Peña, G. (2018). Elaboración de recubrimientos cerámicos sobre sustratos refractarios utilizando proyección térmica oxiacetilénica a partir de materias primas no convencionales. DYNA, 85(205), 338-347. https://doi.org/10.15446/dyna.v85n205.65539 | |
dc.relation.ispartofjournal | DYNA | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.subject.proposal | thermal spray | eng |
dc.subject.proposal | coatings | eng |
dc.subject.proposal | refractory | eng |
dc.subject.proposal | adherence | eng |
dc.subject.proposal | Industrial residues | eng |
dc.subject.proposal | residues reuse | eng |
dc.subject.proposal | proyección térmica | spa |
dc.subject.proposal | recubrimientos | spa |
dc.subject.proposal | refractarios | spa |
dc.subject.proposal | adherencia | spa |
dc.subject.proposal | residuos industriales | spa |
dc.subject.proposal | reutilización de residuos | spa |
dc.title.translated | Elaboración de recubrimientos cerámicos sobre sustratos refractarios utilizando proyección térmica oxiacetilénica a partir de materias primas no convencionales | |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |